TUBOS, ACCESORIOS Y VÁLVULAS MANUALES

Índice

PVC-C	4
Características generales	6
Referencias normativas	8
Certificaciones y marcas de calidad	10
Principales propiedades	11
Instrucciones para el encolado	
TUBO ISO-UNI	17
Tubo de presión TemperFIP100®	''
ACCESORIOS ISO-UNI Accesorios TemperFIP100® para encolar, serie métrica	25
ACCESORIOS ISO-BSP Accesorios TemperFIP100® mixtos	43
VKD DN 10÷50 Válvula de bola de 2 vías Dual BloCk®	55
VKD DN 65÷100 Válvula de bola de 2 vías Dual BloCk®	71
TKD DN 10÷50 Válvula de bola de 3 vías Dual BloCk®	85
VXE DN 10÷50 Válvula de bola de 2 vías EasyFit	101
VXE DN 65÷100 Vávula de bola de 2 vías EasyFit	113
SSE DN 10÷50 Válvula de retención de bola EasyFit con dos tuercas	127
SSE DN 65÷100 Válvula de retención de bola EasyFit con dos tuercas	139
FK DN 40÷300 Válvula de mariposa	151
DK DN 15÷65 Válvula de membrana de 2 vías DIALOCK®	171
VM DN 80÷100 Válvula de membrana	187
CM DN 12÷15 Válvula de membrana compacta	195
RV DN 15÷50 Filtro inclinado	203
LEYENDA	210

PVC-C

Características generales

Desarrollado en 1958 por la Sociedad BF Goodrich, actual LUBRIZOL, el PVC-C (cloruro de polivinilo posclorado) se obtiene a través del proceso de cloración de la resina en suspensión de PVC. Durante la transformación, en la cadena molecular del PVC se produce una sustitución de monómeros alternos de átomos de hidrógeno con átomos de cloro.

Mediante esta transformación se obtiene una resina que garantiza óptimas prestaciones de estabilidad térmica, resistencia química y mecánica hasta temperaturas de 100° C.

En 1986, FIP es la primera empresa europea que produce un sistema integrado de válvulas, accesorios y tubos llamado TemperFIP100®. Nace así un sistema completo de productos para las instalaciones industriales. Hoy, la línea TemperFIP, gracias a la colaboración de ya más de 20 años con la sociedad LUBRIZOL EUROPE, emplea, para la producción de tubos, accesorios y válvulas realizados por extrusión e inyección, resinas de PVC-C CORZANTM, específicamente formuladas para aplicaciones industriales.

Las resinas PVC-C ofrecen también una total compatibilidad en el transporte de agua para potabilizar, de aguas desmineralizadas y termales. El sistema PVC-C TemperFIP100® representa una de las soluciones económicamente más válidas en el campo de los materiales termoplásticos y metálicos para resolver los problemas que se encuentran en el transporte de los fluidos corrosivos calientes y en la distribución del agua sanitaria caliente y fría. Los motivos fundamentales de esta preferencia deben atribuirse a las peculiares características químico-físicas de la resina, entre las que se pueden citar:

• Elevada resistencia química:

el empleo de resinas CORZAN™, obtenidas mediante procesos de cloración del PVC homopolímero, permite garantizar una elevada resistencia química, específicamente en relación a los ácidos inorgánicos fuertes, bases orgánicas, soluciones salinas y alcalinas e hidrocarburos parafínicos. Se aconseja el uso en el transporte de los compuestos orgánicos polares incluidos varios tipos de disolventes clorurados y aromáticos. La inercia a la corrosión electroquímica garantiza una elevada fiabilidad en el transporte de agua caliente para uso sanitario en instalaciones convencionales y de paneles solares.

• Óptimas propiedades térmicas y mecánicas:

el PVC-C TemperFIP100® encuentra su empleo típico en el rango de temperatura de entre 20°C y 85°C con coeficientes de dilatación térmica muy reducidos garantizando prestaciones de excelente resistencia mecánica, y la idoneidad para soportar presiones de funcionamiento del orden de los 10-16 bar a 20°C. La notable estabilidad térmica (VICAT según EN ISO 15493), asociada a un óptimo comportamiento al creep (carga de rotura circunferencial según ASTM D 2837 igual a 1000 PSI 82 °C, 100.000 horas), permiten su empleo hasta los 95 °C aprox. para usos y prestaciones especiales. El reducido coeficiente de conductividad térmica (I = 0,16 W/m °C según ASTM C177) garantiza la virtual eliminación de los problemas de condensación y una reducida pérdida de calor en el transporte de fluidos calientes

• Características físicas:

las resinas de PVC-C se distinguen por la baja permeabilidad al oxígeno y la reducida absorción de agua (0,07% a 23° C según ASTM D 570). Las propiedades físicas del material garantizan una elevada resistencia al envejecimiento y a la agresión de los agentes atmosféricos (radiaciones UV) gracias a la presencia en el compuesto de bióxido de titanio.

• Resistencia al fuego:

las resinas de PVC-C garantizan una excepcional resistencia al fuego, la llama, de hecho, se prende a 482°C y persiste solo en condiciones extremas: si la concentración de oxígeno es 3 veces superior a la atmosférica, o ante una llama procedente de una fuente externa. Las resinas de PVC-C CORZAN™ están clasificadas VO, 5VB y 5VA según UL94.

Densidad					
Método de prueba	ISO 1183	ASTM D792			
Unidad de medida	g/cm ³ .	g/(10min)			
omada de medida	Válvulas/accesorios: 1.50 Tubos				
Valor	1.50	Tubos: 1.50			
Módulo de elasticidad	1.00	14203. 1.00			
Método de prueba	ISO 178	ASTM D790			
Unidad de medida	MPa = N/mm²	MPa = N/mm²			
	Válvulas/accesorios: 2800	Válvulas/accesorios: 2992			
Valor	Tubos: 2420	Tubos: 2689			
Resistencia IZOD con h	endidura a 23° C				
Método de prueba	ASTM D256				
Unidad de medida	ftlbs/in				
Valor	Válvulas/accesorios: 1.8 Tubos:	1.6			
Elongación de rotura					
Método de prueba	ISO 527-1, ISO 527-2				
Unidad de medida	%				
Valor	Válvulas/accesorios: 16 Tubos: 5	5			
Dureza Rockwell					
Método de prueba	ASTM D 785				
Unidad de medida	R				
Valor	Válvulas/accesorios: 120 Tubos:	: 116			
Resistencia a la tracció	δn				
Método de prueba	ISO 527-1, ISO 527-2				
Unidad de medida	$MPa = N/mm^2$				
Valor	Válvulas/accesorios: 54 Tubos: 54				
Reblandecimiento VIC	AT (1 Kg)				
Método de prueba	EN ISO 15493				
Unidad de medida	°C				
Valor	Válvulas/accesorios: ≥ 103 Tubo	os: <u><</u> 110			
Temperatura de distor	sión HDT (0,46 N/mm2)				
Método de prueba	ASTM D648				
Unidad de medida	°C				
Valor	Válvulas/accesorios: 110 Tubos:	113			
Conductividad térmico	ı a 23° C				
Método de prueba	DIN 52612-1	ASTM C 177			
Unidad de medida	W/(m °C)	W/(m °C)			
Valor	Válvulas/accesorios: 0.16	Válvulas/accesorios: 0.16			
valor	Tubos: 0.16	Tubos: 0.16			
Coeficiente de dilataci	ón térmica lineal				
Método de prueba	DIN 53752 -	ASTM D696			
Unidad de medida	m/(m °C)	m/(m °C)			
Valor	Válvulas/accesorios: 5.6 x 10 ⁻⁵	Válvulas/accesorios: 5.6 x 10 ⁻⁵			
Valor	Tubos: 6.6 x 10 ⁻⁵	Tubos: 6.6 x 10 ⁻⁵			
índice límite de oxígen	0				
Método de prueba		ASTM D2863			
Unidad de medida	%				
Valor		Válvulas/accesorios: 60			
	Tubos: 60	ubos: 60			

PVC-C

Referencias normativas

La producción de las líneas de PVC-C TemperFIP100® se realiza siguiendo los más altos estándares de calidad y respetando totalmente las normas ambientales impuestas por las leyes vigentes de acuerdo con la norma ISO 14001.

Todos los productos son realizados de acuerdo con el sistema de garantía de la calidad según la norma ISO 9001.

• ANSI B16.5

Tubos con bridas y accesorios embridados-NPS 1/2 a NPS 24 mm/inch.

• ASTM D1784 cl. 23548B

Compuesto de PVC rígido y PVC-C (para aplicaciones industriales).

ASTM F437

Accesorios roscados de PVC-C, sch. 80.

ASTM F439

Accesorios de PVC-C para tubos.

ASTM F441

Tubo de PVC-C, sch. 40 y 80.

BS 10

Especificaciones para bridas y tornillos para tubos, válvulas y accesorios.

BS 1560

Bridas para tubos, válvulas y accesorios (diseño según la clase). Bridas de acero, fundición y aleaciones de cobre. Especificación para bridas de acero.

BS 4504

Bridas para tubos, válvulas y accesorios (diseño según PN).

• DIN 2501

Bridas, dimensiones.

DIN 2999

Roscado para tubos y accesorios.

DIN 8063

Dimensiones de los accesorios de PVC-C.

• DIN 8079-8080

Tubos de PVC-C, dimensiones.

DIN 16962

Accesorios de PVC-C para soldadura socket y a tope, dimensiones.

• DIN 16963

Uniones de tubos y partes de tuberías para el transporte de fluidos a presión en PEAD.

• EN 558-1

Válvulas industriales dimensiones externas de válvulas metálicas para el uso en sistemas de tuberías embridadas - Parte 1: diseño según PN.

• EN 1092-1

Bridas y sus uniones Bridas circulares para tuberías, accesorios válvulas y accesorios válvulas y accesorios - Parte 1: bridas de acero, diseño según PN.

• EN ISO 15493

Sistemas de componentes (tubos, accesorios y válvulas) de PVC-C para aplicaciones industriales.

• ISO 228-1

Accesorios de PVC-C con terminales roscados.

• ISO 5211

Acoplamientos para actuadores de cuarto de vuelta.

• ISO 7005-1

Bridas metálicas; parte 1: bridas de acero.

• JIS B 2220

Bridas para tubos metálicos.

• UNI 11242

Uniones mediante encolado de tubos, accesorios y válvulas de PVC-C.

Certificaciones y marcas de calidad

ABS

El sistema PVC-C TemperFIP100[®] es reconocido apto para el transporte y para el tratamiento de aguas sanitarias y de acondicionamiento a bordo de barcos y otras unidades clasificadas por el American Bureau of Shipping (ABS).

ACS

El sistema PVC-C TemperFIP100[®] ha sido certificado como apto para entrar en contacto con agua destinada al consumo humano según la Attestation de conformité sanitaire (ACS).

Bureau Veritas

El sistema PVC-C TemperFIP100® es reconocido apto para el transporte, para el tratamiento de aguas sanitarias y de acondicionamiento a bordo de barcos y otras unidades clasificadas por el Bureau Veritas Marine Division.

DNV-GL

El sistema PVC-C TemperFIP100® es reconocido apto para el transporte, para el tratamiento de aguas sanitarias y de acondicionamiento a bordo de barcos y otras unidades clasificadas por DNV-GL.

• FAC

El sistema PVC-C Temper FIP100 $^{\circ}$ está certificado GOST-R y EAC de acuerdo con los reglamentos rusos para la Seguridad, Higiene y Calidad.

• Lloyd's Register

Los accesorios y los tubos de PVC-C TemperFIP100® son reconocidos aptos para el transporte, para el tratamiento de aguas sanitarias y de acondicionamiento a bordo de barcos y otras unidades clasificadas por el Lloyd's Register.

KR Korean Register

El sistema FIP TemperFIP100 PVC-C ha sido reconocido como adecuado para transportar, tratar aguas domésticas y de aire acondicionado a bordo de barcos y otras unidades clasificadas por el KR (Registro coreano de envío).

• NSF (National Sanitation Foundation USA)

Las válvulas de bola FIP de PVC-C han sido incluidas en la lista NSF/ANSI Standard 61 Drinking Water System Components Health Efects.

• TA-Luft

Las válvulas de PVC-C TemperFIP100® han sido probadas y certificadas según "TA-Luft" por el MPA Stuttgart de acuerdo con la Technical Instruction on Air Quality Control TA-Luft/VDI 2440.

• UKR SEPRO

Las válvulas y accesorios de PVC-C TemperFIP100® están certificados de acuerdo con los reglamentos ucranianos para la Seguridad, Higiene y Calidad.

WRAS

El sistema PVC-C TemperFIP100® es reconocido por el WRAS (Water Regulation Advisory Scheme UK).

RMRS

El sistema FIP TemperFIP100 PVC-C ha sido reconocido como adecuado para transporte, tratamiento de aguas domésticas y de climatización a bordo de buques y otras unidades clasificadas por el Registro Marítimo Ruso de Navegación.

Principales propiedades

Propiedades del PV	C-C	Beneficios
Resistencia térmica		• Campo de uso 0-100°C (ver las curvas de regresión presión / temperatura).
Baja rugosidad superficial		 Elevados coeficientes de caudal (superficies internas muy lisas). Pérdidas de carga constantes en el tiempo. Bajo riesgo de paradas debidas a incrustaciones. Reducida cesión de material a los fluidos transportados.
Resistencia química	50	Excepcional resistencia química para el transporte de fluidos corrosivos (generalmente inerte a los ácidos y bases inorgánicos, hidrocarburos aromáticos y alifáticos, ácidos orgánicos, alcoholes y disolventes halogenados.
Resistencia a la abrasión		Costes de gestión extremadamente reducidos gracias a la elevada vida útil.
Aislante		 No conductible (indiferente a la corrosión galvánica). Eliminación de los problemas de condensación. Reducida pérdida de calor.
La más reducida dilatación térmica lineal entre los termoplásticos	\longleftrightarrow	Menor necesidad de abrazaderas y de juntas de dilatación, por tanto, notables ventajas en términos de diseño de la instalación.
Facilidad de unión (encolado en el empalme)		Costes de instalación reducidos gracias al procedimiento de unión "encolado" obtenido a través del empleo de colas adecuadas.
Óptimo comportamiento al fuego		Más resistente a la combustión respecto a materiales termoplásticos de uso común, y gracias a la presencia de cloro, autoexingible.
Óptimas características mecánicas		El PVC-C responde a la necesidad de proporcionar una resistencia mecánica idónea y que cumpla con las exigencias de diseño de las instalaciones industrial.

Instrucciones para el encolado

La soldadura química con adhesivo, o simplemente "ENCOLADO", es el sistema de unión longitudinal específico para la conexión de tubos y accesorios de PVC-C TemperFIP100 (justo después de esto de TemperFIP100 ponemos la R de registrado en subíndice).

El encolado se efectúa utilizando colas/adhesivos obtenidos de la disolución del polímero PVC-C en una mezcla específica de solventes que ablandan las paredes de los tubos y accesorios para luego efectuar la soldadura cediendo el material que contienen. La soldadura química permite obtener uniones permanentes con características de resistencia química y mecánica asimilables a las de los tubos y accesorios empleados. Se sabe que las colas/adhesivos deben seleccionarse en función del tipo de resina termoplástica a soldar, ya que varía la naturaleza de los solventes y del material de relleno que contienen. Se recuerda que todas las colas destinadas a la conexión de tuberías TemperFIP100® e introducidas en el Sistema TemperFIP100® deben utilizarse para la unión de tubos, accesorios y válvulas de línea homogéneos.

Debe evitarse absolutamente el uso de la misma cola para la soldadura de elementos realizados en resinas termoplásticas diferentes de las empleadas en el Sistema TemperFIP100®.

Para ello, FIP ha estudiado colas especiales TemperGLUE y TemperGLUE/Weld-On 724 realizadas con la misma resina "PVC-C CORZAN™" empleada para la producción de tubos, accesorios y válvulas que garantizan uniones permanentes de óptima fiabilidad.

Antes de comenzar las operaciones de encolado, evaluar la eficiencia y el buen estado de las herramientas y las piezas a ensamblar, y comprobar la homogeneidad, la fluidez y la fecha de caducidad de la cola

- 1) Cortar el tubo perpendicularmente a su eje; para obtener una sección recta adecuada es preferible utilizar cortatubos con rueditas, creados especialmente para el corte de tubos termoplásticos (fig. 1).
- 2) Achaflanar el extremo del tubo sobre la superficie externa para garantizar la correcta introducción en el accesorio con un ángulo de 15° (consultar los valores indicados en la tabla "Longitud introducción encolado y achaflanado del tubo"). Esta operación es muy importante, ya que sin el achaflanado la cola podría despegarse de la superficie del accesorio, por lo que la eficacia de la unión se vería comprometida. Esta operación debe realizarse con herramientas achaflanadoras adecuadas para tal fin (fig. 2).
- **3)** Medir la profundidad del empalme del accesorio hasta el tope interno y marcar en el extremo del tubo el valor correspondiente (fig. 3-4).
- 4) Utilizando un paño de papel absorbente (limpio) o un aplicador impregnado con limpiador o Primer P70 (TemperFIP), eliminar la suciedad y la grasa de la superficie externa del tubo en toda la longitud del encolado y repetir la misma operación sobre la superficie interna del empalme del accesorio, hasta ablandar as superficies (fig. 3-4).

Dejar secar las superficies unos minutos antes de aplicar la cola. Se recuerda que el empleo de los limpiadores TemperFIP100® o Primer P70, además de pulir y limpiar las superficies a unir, desempeña una importante acción de reblandecimiento y preparación de la recepción de la cola; por eso dicha operación permite lograr una unión óptima.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

5) Aplicar las colas TemperGLUE o TemperGLUE/Weld-On 724 de manera uniforme, longitudinalmente sobre ambos componentes a ensamblar (superficie externa del tubo e interna de acoplamiento del accesorio) utilizando un aplicador o pincel del tamaño adecuado (tabla "Características y dimensiones de los pinceles o aplicadores").

De todas maneras, se recomienda utilizar un aplicador/pincel cuyas dimensiones no sean inferiores a la mitad del diámetro del tubo (fig. 7-8). La aplicación de la cola TemperGLUE al tubo y al accesorio debe extenderse a lo largo de toda la longitud de las superficies de acoplamiento:

- En toda la profundidad del empalme del accesorio hasta el tope interno.
- En toda la longitud de encolado del tubo, marcada anteriormente sobre la superficie externa.
- 6) Introducir inmediatamente el tubo en el accesorio utilizando toda la longitud de acoplamiento prevista, sin rotaciones; sólo a continuación, es posible girar levemente ambos extremos (máx. 1/4 de vuelta entre tubo y accesorio).

El movimiento rotatorio uniformará la capa de cola aplicada.

7) El tubo se debe ensamblar con el accesorio rápidamente (no superar los 20-25 segundos).

Según el diámetro externo de los tubos y, en consecuencia, las distintas dificultades operativas, la introducción del tubo en el accesorio deberá ser efectuada:

- Manualmente por una persona, hasta diámetros externos < 90 mm.
- Manualmente por dos personas, hasta diámetros externos d 90 a d
- Con el auxilio de acopladores de tubos mecánicos para diámetros externos > 160 mm.
- 8) Inmediatamente después de introducir el tubo en el accesorio (hasta el tope) ejercer presión unos segundos y eliminar con un papel crepe o un paño limpio el exceso de cola de la superficie externa, y en lo posible de las superficies internas (fig. 9).
- 9) Secado de la cola: es necesario dejar descansar los elementos unidos para permitir el fraguado natural de la cola sin generar esfuerzos anómalos. El tiempo de fraguado depende del grado de esfuerzo que deberá soportar la unión. En particular, se deben respetar los tiempos mínimos en función de la temperatura ambiente:
- Antes de poner en uso la unión:
- De 5 a 10 minutos a T. Amb. > 10 $^{\circ}$ C.
- De 15 a 20 minutos a T. Amb. < 10 $^{\circ}$ C.
- Para uniones de reparación no sujetas a prueba hidráulica, con todas las medidas y presiones:
- 1 hora por cada atmósfera de presión aplicada.
- Para uniones sujetas a prueba hidráulica de tubos y accesorios hasta PN 16, de cualquier diámetro:
- Mínimo 24 horas.

Los tiempos de fraguado indicados se han calculado para temperaturas ambiente de aproximadamente 25 °C. En caso de condiciones climáticas particulares (humedad, temperatura, etc.) sugerimos consultar nuestros servicios técnicos y los fabricantes de cola para más detalles.

Fig. 6

Fig. 7

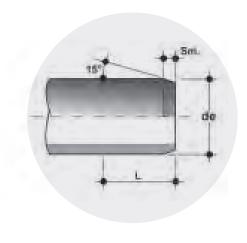


Fig.8

Fig.9

Diámetro externo de (mm)	Longitud de encolado L (mm)	Achaflanado Sm (mm)
16	14	1.5
20	16	1.5
25	18.5	3
32	22	3
40	26	3
50	31	3
63	37.5	5
75	43.5	5
90	51	5
110	61	5
160	86	5
225	118.5	5÷6

CARACTERÍSTICAS y DIMENSIONES DE LOS PINCELES O APLICADORES

Diámetro externo de (mm)	Tipo y dimensiones del pincel o aplicador
16 - 25	Redondo (8 - 10 mm)
32 - 63	Redondo (20 - 25 mm)
75 - 160	Rectangular / Redondo (45 - 50 mm)
>160	Rectangular / Cilíndrico (45 - 50 mm)

ADVERTENCIAS

- Si el diámetro externo del tubo y el diámetro interno del accesorio están en los extremos opuestos de sus valores de tolerancia, el tubo seco no se puede introducir en el empalme seco del accesorio. La operación de introducción será posible sólo después de aplicar la combinación de limpiador y cola a ambos componentes a soldar.
- Las colas TemperGLUE y TemperGLUE/Weld-On 724 se realizan con la misma resina de PVC-C CORZAN™ que FIP utiliza para la producción de tubos, accesorios y válvulas que componen el sistema TemperFIP. Salvo que se especifique otra cosa, la cola empleada para las superficies a unir admite las siguientes tolerancias de uso:
 - · Interferencia máx. de 0,2 mm.
 - · Tolerancia de juego máx. 0,3 mm.
- La combinación TemperGLUE/Weld-On 724 con Primer P70 para PVC-C CORZAN™ es aconsejable en caso de fluidos químicos (ácidos y bases fuertes) especialmente agresivos.
- Durante el empleo de la cola TemperGLUE y de los limpiadores TemperFIP se recomienda atenerse a las siguientes advertencias:
 - Utilizar guantes y gafas de seguridad para proteger las manos y los ojos.
- Utilizar la cola y el limpiador en ambientes de trabajo con suficiente ventilación para evitar la formación de sacos de aire con concentraciones de solvente evaporado que podrían causar irritaciones en las vías respiratorias y en los órganos de la vista.
- A causa de la volatilidad de los solventes contenidos en la cola y el limpiador, se recuerda que los envases se deben cerrar inmediatamente después del uso.
- Los solventes en fase gaseosa tienden a formar mezclas inflamables, por lo que se recomienda eliminar de las áreas de trabajo eventuales fuentes de ignición, a saber: operaciones de soldadura, cargas electrostáticas; se recuerda no fumar. En todo caso, se recomienda atenerse estrictamente a las advertencias de los fabricantes, impresas en los envases de las colas.
- Se recomienda ejecutar el procedimiento de encolado a una temperatura ambiente de ÷ 5 a ÷ 40° C, para no perjudicar las prestaciones de la cola y el limpiador.
- El consumo de cola para las uniones depende de numerosos factores (condiciones ambientales, dimensiones de los tubos, viscosidad de la cola, experiencia de los operadores, etc.), a menudo difícilmente mensurables; consultar la tabla "Tubos y accesorios de PVC-U rígido. Consumos teóricos de cola", donde se indican valores aproximados de la cantidad de cola empleada normalmente para realizar las uniones de tubos y accesorios de diferente diámetro.
- Después de terminar todas las uniones, antes de poner las líneas en servicio, cerciorarse de que las tuberías estén totalmente evacuadas de restos/vapores de solvente para evitar fenómenos de contaminación en los fluidos transportados.

TUBOS Y ACESORIOS DE PVC-C RÍGIDO. CONSUMOS TEÓRICOS DE COLA

Diámetro del tubo/accesorio de (mm)	Número de uniones con 1 kg de cola
16	550
20	500
25	450
32	400
40	300
50	200
63	140
75	90
90	60
110	40
160	15
225	6

Defectos más comunes

En la tabla se indican los tipos de defectos que se observan con mayor frecuencia como consecuencia de una ejecución incorrecta de encolado:

Cola demasiado líqu	uida (añadido inapropiado de diluyente)
Efecto inmediato	Ausencia de encolado.
Consecuencia	Desencastre o pérdidas en la unión entre tubo y accesorio.
Exceso de cola	
Efecto inmediato	Encolado externo e interno fuera de la zona de unión.
Consecuencia	Debilitamiento de las superficies externas a la zona de unión y formación de burbujas con pequeñas grietas que pueden ser causa de fractura del material de base.
Cola excesivamente	densa a causa del solvente evaporado
Efecto inmediato	Ausencia de encolado.
Consecuencia	Desencastre o pérdidas en la unión entre tubo y accesorio. Posibles grietas superficiales que pueden ser causa de fractura del material de base.
Cola insuficiente o r	o correctamente distribuida
Efecto inmediato	Encolado ausente o localmente débil.
Consecuencia	Desencastre o pérdidas en la unión entre tubo y accesorio.
Introducción del tub	o incorrecta (incompleta, excesiva, desalineada)
Efecto inmediato	Unión imperfecta.
Consecuencia	Estrés mecánico transmitido por el tubo al accesorio o pérdidas en la unión.
Impurezas o humed	ad en las superficies de los componentes a encolar
Efecto inmediato	Unión imperfecta.
Consecuencia	Desencastre o pérdidas (fugas de fluido) en la unión entre tubo y accesorio.

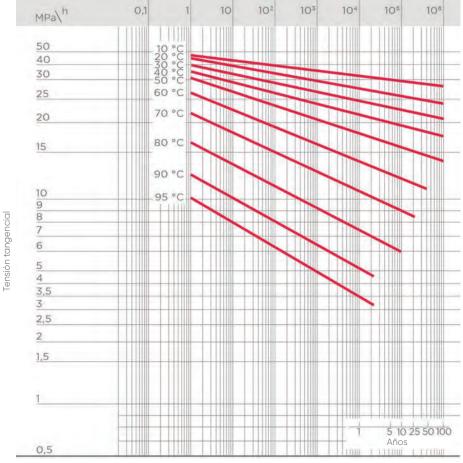
TUBO ISO-UNI

PVC-C

Tubo de presión TemperFIP100®

TUBO ISO-UNI

Tuberías bajo presión con sistema de unión mediante soldadura química en frío (encolado) a través del uso de cola (TemperGLUE WELDON) y limpiador.


TUBO DE PRESIÓN TEMPERFIP100®

Especificaciones técnicas	
Gama dimensional	d 16 ÷ d 225 (mm)
Presión nominal	SDR 13.6 (PN16) con agua a 20° C SDR 21(PN10) con agua a 20° C
Rango de temperatura	0 °C ÷ 100 °C
Estándares de unión	Encolado: EN ISO 15493
Referencias normativas	Criterios constructivos: EN ISO 15493
	Métodos y requisitos de las pruebas: EN ISO 15493
	Criterios de instalación: DVS 2204, DVS 2221, UNI 11242
Material	PVC-C

DATOS TÉCNICOS

CURVAS DE REGRESIÓN PARA TUBERÍAS DE PVC-C

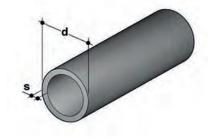
Coeficientes de regresión de acuerdo con EN ISO 15493 para valores de MRS (mínimo) = 25 N/ mm2 (MPa).


Vida útil

VARIACIÓN DE LA PRESIÓN EN FUNCIÓN DE LA TEMPERATURA

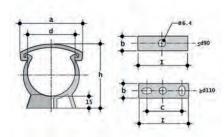
Para agua o fluidos no peligrosos para los cuales el material está clasificado como QUÍMICAMENTE RESISTENTE (expectativa de vida 25 años). En otros casos es necesaria una disminución adecuada de la presión nominal PN.

Nota


Para el empleo del PVC-C con temperaturas de funcionamiento superiores a 90°, se aconseja ponerse en contacto con el servicio técnico.

Temperatura de funcionamiento

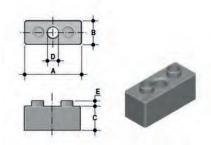
Los datos de este catálogo se suministran de buena fe. FIP no asume ninguna responsabilidad por los datos no derivados directamente de normas internacionales. FIP se reserva el derecho de aportar cualquier modificación. La instalación y el mantenimiento del producto deben ser realizados por personal cualificado.


DIMENSIONES

TUBO DE PRESIÓN TemperFIP100®
Tubo de presión de PVC-C Corzan® según EN ISO 15493 y DIN 8079/8080, gris claro RAL 215, longitud estándar 5m

d	DN	S mm	kg/m	Código PN16 SDR SDR 13,6 - S6,3
16	10	1,4	0,110	PIPEC13016
20	15	1,5	0,170	PIPEC13020
25	20	1,9	0,260	PIPEC13025
32	25	2,4	0,420	PIPEC13032
40	32	3,0	0,630	PIPEC13040
50	40	3,7	0,970	PIPEC13050
63	50	4,7	1,530	PIPEC13063
75	65	5,6	2,200	PIPEC13075
90	80	6,7	2,880	PIPEC13090
110	100	8,1	4,310	PIPEC13110
160	150	11,8	9,040	PIPEC13160

d	DN	S mm	kg/m	Código PN10 SDR 21-S10
110	100	5,3	2,890	PIPEC21110
160	150	7,7	6,060	PIPEC21160
225	200	10,8	12,200	PIPEC21225



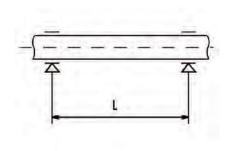
ZIKM

Abrazadera para tubería ISO-DIN de PP*

d	а	b	С	h	1	Código
**16	26	18	-	33	16	ZIKM016
**20	33	14	-	38	20	ZIKM020
**25	41	14	-	44	25	ZIKM025
**32	49	15	-	51	32	ZIKM032
**40	58	16	-	60	40	ZIKM040
**50	68	17	-	71	60	ZIKM050
**63	83	18	-	84	63	ZIKM063
**75	96	19	-	97	75	ZIKM075
**90	113	20	-	113	90	ZIKM090
**110	139	23	40	134	125	ZIKM110
**125	158	25	60	151	140	ZIKM125
**140	177	27	70	167	155	ZIKM140
**160	210	30	90	190	180	ZIKM160
**180	237	33	100	211	200	ZIKM180

*para las abrazaderas para tubería consultar las normas DVS 2210-1 (Planning and execution above-ground pipe system)
**producto comercializado

DSM


Distanciadores de PP para abrazaderas ZIKM*

d	А	В	С	D	Е	Pack	Master	Código
**32	33	16	14	8	4	20	120	DSM032
**40	41	17	17	8	4	10	80	DSM040
**50	51	18	17	8	4	10	50	DSM050
**63	64	19	22,5	8	4	10	40	DSM063
**75	76	20	34,5	8	4	10	40	DSM075

*para las abrazaderas para tubería consultar las normas DVS 2210-1 (Planning and execution above-ground pipe system)
***producto comercializado

INSTALACIÓN

COLOCACIÓN DE ABRAZADERAS PARA TUBERÍA (ZIKM)

La instalación de tubos de material termoplástico requiere el uso de abrazaderas para prevenir las flexiones y el consiguiente estrés mecánico.

La distancia entre las abrazaderas depende del material, SDR, la temperatura superficial del tubo y la densidad del fluido.

Antes de realizar la instalación de las abrazaderas, verificar las distancias que se indican en la siguiente tabla de acuerdo con las normas DVS 2210-01 para tuberías de conducción de agua.

Abrazaderas para tubería PVC-C para el transporte de líquidos de una densidad de $1 \, \text{g/cm}^3$. (agua u otros fluidos de igual intensidad)

Para tubos SDR 13,6 / S 6,3 / PN 16:

Distancia L en mm a diferentes temperaturas de pared

d mm	< 20 °C	30 °C	40 °C	50 °C	60 °C	70 °C	80 °C	90 °C
16	1000	1150	900	850	750	675	600	500
20	1150	1100	1025	950	875	775	700	600
25	1200	1150	1100	1000	900	800	700	600
32	1350	1250	1200	1100	1000	900	800	700
**75	76	20	34,5	8	4	10	40	DSM075

*para las abrazaderas para tubería consultar las normas DVS 2210-1 (Planning and execution above-ground pipe system)

**producto comercializado

Para tubos SDR 21 / S 10 / PN 10:

Distancia L en mm a diferentes temperaturas de pared

d mm	< 20 °C	30 °C	40 °C	50 °C	60 °C	70 °C	80 °C	90 °C
40	1500	1400	1300	1250	1150	1050	900	800
50	1650	1600	1500	1400	1300	1200	1100	900
63	1850	1750	1650	1600	1500	1350	1250	1050
75	2050	1950	1850	1750	1650	1500	1350	1200
90	2250	2100	2000	1900	1800	1650	1500	1300
110	2500	2350	2200	2100	1950	1800	1650	1450
125	2650	2500	2350	2250	2100	1950	1750	1550
140	2800	2650	2500	2350	2200	2050	1820	1650
160	3000	2850	2700	2550	2400	2200	2000	1750
180	3150	3000	2850	2700	2500	2300	2100	1850
200	3350	3150	3000	2850	2650	2450	2200	1950
225	3550	3350	3200	3000	2800	2600	2350	2100
250	3750	3550	3350	3150	3000	2750	2500	2200
280	3950	3750	3550	3350	3150	2900	2650	2350
315	4200	4000	3750	3550	3350	3050	2800	2450
355	4450	4250	4000	3800	3550	3250	2950	2650
400	4750	4500	4250	4000	3750	3450	3150	2800

En caso de SDR diferentes, multiplicar los datos que figuran en la tabla por los siguientes factores:

1,08 para SDR13,6 / S6,3 / PN16 gama dimensional d40 d400

1,12 para SDR11 / S5 / PN20 toda la gama dimensional

Abrazaderas para tuberías de PVC-C para el transporte de líquidos de una densidad diferente de 1 g/cm³.

Si el líquido a transportar tiene una densidad diferente de 1 g/cm 3 ., la distancia L de la tabla se debe multiplicar por los factores indicados en la tabla

Densidad del fluido en g/cm³	Factor para abrazadera
1,25	0,96
1,50	0,92
< 0,01	1,40 para SDR21 / S10 / PN10
	1,27 para SDR13,6 / S6,3 / PN16
	1,23 para SDR11 / S5 / PN20

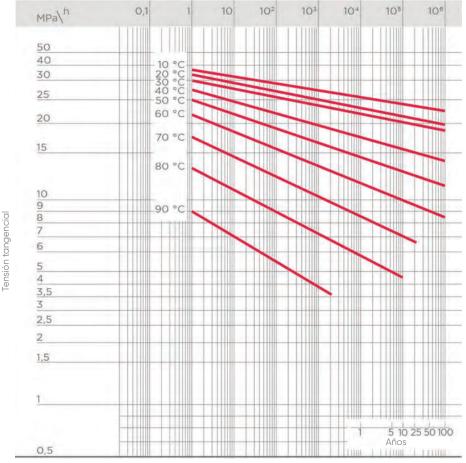
ACCESORIOS ISO-UNI

PVC-C

Accesorios TemperFIP100® para encolar, serie métrica

ACCESORIOS ISO-UNI

Serie de accesorios destinados al transporte de fluidos bajo presión con sistema de unión mediante soldadura química en frío (encolado) a través del uso de cola adecuada (TemperGLUE WELDON) y limpiador.

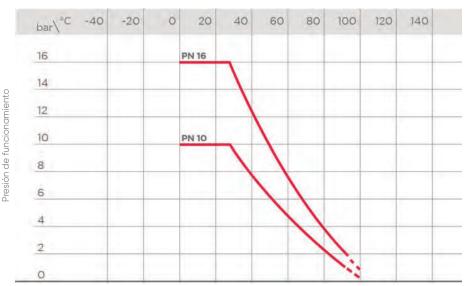

ACESORIOS PARA ENCOLAR, SERIE MÉTRICA

Especificaciones técnicas					
Gama dimensional	d 16 ÷ 225 (mm)				
Presión nominal	PN 16 con agua a 20° C				
Rango de temperatura	0 °C ÷ 100 °C				
Estándares de unión	Encolado: EN ISO 15493 Can be coupled to pipes according to EN ISO 15493				
	Embridado: ISO 7005-1, EN ISO 15493, DIN 2501, ANSI B.16.5 cl. 150				
Referencias normativas	Criterios constructivos: EN ISO 15493				
	Métodos y requisitos de las pruebas: EN ISO 15493				
	Criterios de instalación: DVS 2204, DVS 2221, UNI 11242				
Material accesorios	PVC-C				
Material de las juntas	EPDM, FKM				

DATOS TÉCNICOS

CURVAS DE REGRESIÓN PARA ACESORIOS DE PVC-C

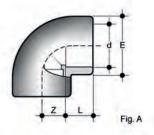
Coeficientes de regresión de acuerdo con EN ISO 15493 para valores de MRS (mínimo) = 20 N/ mm2 (MPa).


Vida útil

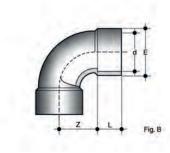
VARIACIÓN DE LA PRESIÓN EN FUNCIÓN DE LA TEMPERATURA

Para agua o fluidos no peligrosos para los cuales el material está clasificado como QUÍMICAMENTE RESISTENTE (expectativa de vida 25 años). En otros casos es necesaria una disminución adecuada de la presión nominal PN.

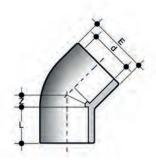
Nota


Para el empleo del PVC-C con temperaturas de funcionamiento superiores a 90°, se aconseja ponerse en contacto con el servicio técnico.

Temperatura de funcionamiento


Los datos de este catálogo se suministran de buena fe. FIP no asume ninguna responsabilidad por los datos no derivados directamente de normas internacionales. FIP se reserva el derecho de aportar cualquier modificación. La instalación y el mantenimiento del producto deben ser realizados por personal cualificado.

DIMENSIONES


GIC Codo a 90° con extremos para encolar hembra (fig. A)

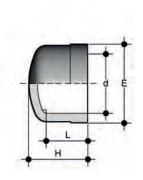
d	PN	Е	L	Z	g	Código
16	16	22	14	9	12	GIC016
20	16	27	16	11,5	20	GIC020
25	16	33	19	14	34	GIC025
32	16	41	22	16,5	56	GIC032
40	16	50	26	22,5	95	GIC040
50	16	61	31	27	155	GIC050
63	16	76	38	33,5	283	GIC063
75	16	91	44	40,3	490	GIC075
90	16	107	51	48	745	GIC090
110	16	130	61	60	1265	GIC110
160	16	194	87	93	4450	GIC160

GIC Codo a 90° con extremos para encolar hembra (fig. B.)

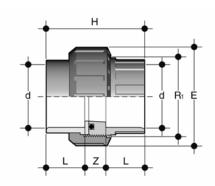
d	PN				g	Código
225	10	258	119	172	9270	GIC225

HIC Codo a 45° con extremos para encolar hembra

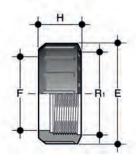
d	PN				g	Código
20	16	28	16	5,5	20	HIC020
25	16	34	19	6	32	HIC025
32	16	42,5	22	7	58	HIC032
40	16	52	26	10,5	101	HIC040
50	16	64	31	11,7	175	HIC050
63	16	80	38	14	305	HIC063
75	16	90	44	17	344	HIC075
90	16	107	51	21,5	587	HIC090
110	16	130	61	26	1007	HIC110
160	16	192	86	38	3255	HIC160
225	10	260	121	55	7150	HIC225


MIC Manguito encolar hembra

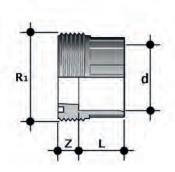
d	PN	Е	L	Z	g	Código
16	16	22	14	3	9	MIC016
20	16	27	16	3	11	MIC020
25	16	33	19	3	21	MIC025
32	16	41	22	3	31	MIC032
40	16	50	26	3	58	MIC040
50	16	61	31	3	90	MIC050
63	16	75	38	3	160	MIC063
75	16	89	44	3	260	MIC075
90	16	108	51	5	465	MIC090
110	16	130	61	9	750	MIC110
160	16	186	86	9	1820	MIC160
225	10	260	119	11	5360	MIC225


TIC T a 90° con extremos para encolar hembra

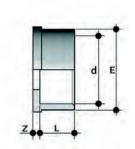
d	PN	E	L	Z	g	Código
16	16	22	14	9	15	TIC016
20	16	27	16	11	25	TIC020
25	16	33	19	14	45	TIC025
32	16	41	22	17,5	75	TIC032
40	16	50	26	22	125	TIC040
50	16	61	31	27	195	TIC050
63	16	76	38	33,5	394	TIC063
75	16	91	44	38,5	667	TIC075
90	16	109	51	48	1075	TIC090
110	16	133	61	61	1920	TIC110
160	16	192	86	89	5730	TIC160
225	10	258	119	114	10800	TIC225


CICTapón con extremo para encolar hembra

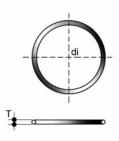
d	PN	E	H	L	g	Código
20	16	28	23	16	9	CIC020
25	16	34	27	19	16	CIC025
32	16	41	31	22	25	CIC032
40	16	51	36	26	42	CIC040
50	16	62	43	31	64	CIC050
63	16	77	51	38	115	CIC063
75	16	91	59	44	205	CIC075
90	16	110	69	51	260	CIC090
110	16	132	83	61	555	CIC110


BICUnión 3 piezas con extremos para encolar hembra con juntas en EPM o FPM

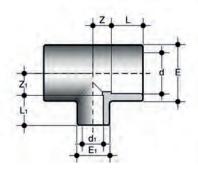
d	R_1	PN	Е	Н	L	Z	g	Código EPDM	Código FPM
16	3/4"	16	33	41	14	13	23	BIC016E	BIC016F
20	1"	16	41	45	16	13	39	BIC020E	BIC020F
25	1"1/4	16	50	51	19	13	68	BIC025E	BIC025F
32	1"1/2	16	58	57	22	13	94	BIC032E	BIC032F
40	2"	16	72	67	26	15	163	BIC040E	BIC040F
50	2"1/4	16	79	79	31	17	190	BIC050E	BIC050F
63	2"3/4	16	98	98	38	22	355	BIC063E	BIC063F


EFCTuerca con rosca hembra cilíndrica para uniones 3 piezas tipo BIC, BIFC, BFC, BIC, BIRC, BIFOC, BIROC, BIRXC.

R_1	d BIC	PN				g	Código
3/4"	16	16	33	22	21	9	EFC034
1"	20	16	41	28	22	13	EFC100
1" 1/4	25	16	50	36	25	22	EFC114
1" 1/2	32	16	58	42	27	30	EFC112
2"	40	16	72	53	30	50	EFC200
2" 1/4	50	16	79	59	34	68	EFC214
2" 3/4	63	16	98	74	38	120	EFC234

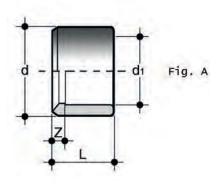

F/BIC Parte fija para encolar, serie métrica

d		PN			g	Código
16	3/4"	16	14	10	9	FBIC016
20	1"	16	16	10	13	FBIC020
25	1"1/4	16	19	10	25	FBIC025
32	1"1/2	16	22	10	31	FBIC032
40	2"	16	26	12	58	FBIC040
50	2"1/4	16	31	14	63	FBIC050
63	2"3/4	16	38	19	119	FBIC063


Q/BICParte loca para encolar, serie métrica

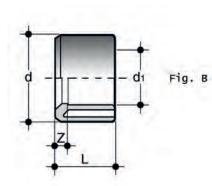
d	PN				g	Código
16	16	22	14	3	5	QBIC016
20	16	27,5	16	3	10	QBIC020
25	16	36	19	3	16	QBIC025
32	16	41,5	22	3	23	QBIC032
40	16	53	26	3	40	QBIC040
50	16	59	31	3	44	QBIC050
63	16	74	38	3	82	QBIC063

JUNTAS TÓRICASJuntas para uniones 3 piezas tipo BIC, BIFC, BIFOC, BIFXC, BIRXC

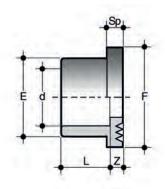

Union d	С	di	Т	Código EPDM	Código FPM
16	3062	15,54	2,62	OR3062E	OR3062F
20	4081	20,22	3,53	OR4081E	OR4081F
25	4112	28,17	3,53	OR4112E	OR4112F
32	4131	32,93	3,53	OR4131E	OR4131F
40	6162	40,65	5,34	OR6162E	OR6162F
50	6187	47	5,34	OR6187E	OR6187F
63	6237	59,69	5,34	OR6237E	OR6237F
75	6300	75,57	5,34	OR6300E	OR6300F
90	6362	91,45	5,34	OR6362E	OR6362F
110	6450	113,67	5,34	OR6450E	OR6450F

TRIC

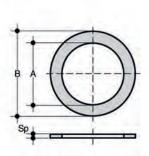
T reductora de 90° con ramificación reducida y casquillos de soldadura por solvente


d x d ₁	PN	Е	E,	L	Ц	Z	Z ₁	g	Código
25 x 20	16	33	28	19	16	14	14	41	TRIC025020
32 x 20	16	41	28	22	16	17,5	17,5	66	TRIC032020
32 x 25	16	41	34	22	19	17,5	17,5	72	TRIC032025
40 x 20	16	50	29	26	16	22	22	111	TRIC040020
40 x 25	16	50	34	26	19	22	22	111	TRIC040025
50 x 25	16	61	35	31	19	27	27	176	TRIC050025
50 x 32	16	61	42	31	22	27	27	182	TRIC050032
63 x 25	16	76	36	38	19	33,5	33,5	320	TRIC063025
63 x 32	16	76	43	38	22	33,5	33,5	325	TRIC063032
75 x 25	16	91	33	44	16	40,5	39	470	TRIC075025
90 x 25	16	109	33	51	16	48,5	46	773	TRIC090025
110 x 25	16	133	33	61	16	61	56	1170	TRIC110025

DIC

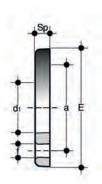

Casquillo reducción con un extremo macho para encolar (d) y otro hembra para encolar (d1 reducido) (fig. A)

d x d ₁	PN	L	Z	g	Código
20 x 16	16	16	2	3	DIC020016
25 x 20	16	19	3	6	DIC025020
32 x 20	16	22	6	16	DIC032020
32 x 25	16	22	3	11	DIC032025
40 x 32	16	26	4	18	DIC040032
50 x 40	16	31	5	35	DIC050040
63 x 50	16	38	7	70	DIC063050
75 x 63	16	44	6	92	DIC075063
90 x 75	16	51	7	159	DIC090075
110 x 90	16	61	9	297	DIC110090


DIC
Casquillo reducción con un extremo macho para encolar (d) y otro hembra para encolar (d1 reducido) (fig. B)

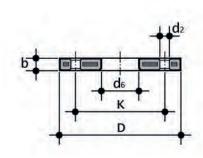
d x d,	PN		Z	Q	Código
40 x 20	16	26	10	g 27	DIC040020
40 x 25	16	26	7	26	DIC040025
50 x 32	16	31	9	39	DIC050032
63 x 32	16	38	16	81	DIC063032
63 x 40	16	38	11,5	84	DIC063040
75 x 50	16	44	12	126	DIC075050
90 x 50	16	51	20	213	DIC090050
90 x 63	16	51	13	209	DIC090063
110 x 63	16	61	23	365	DIC110063
110 x 75	16	61	17	386	DIC110075
160 x 110	16	86	25	1040	DIC160110
225 x 160	10	119	33	2100	DIC225160

QRC
Manguito portabridas estriado según normas DIN 8063 PN 10/16 con extremo para encolar hembra, superficie de apoyo estriada para asientos planos (para las dimensiones de las juntas ver QHV)


d	DN	PN	Е	F	L	Sp	Z	g	Código
20	15	16	27	34	16	7	3.5	11	QRC020
25	20	16	33	41	19	7	3	17	QRC025
32	25	16	41	50	22	7	3	27	QRC032
40	32	16	50	61	26	8	3	43	QRC040
50	40	16	61	73	31	8	3	66	QRC050
63	50	16	76	90	38	9	3	116	QRC063
75	65	16	90	103	44	10	3	175	QRC075
90	80	16	108	125	51	10	5	305	QRC090
110	100	16	131	150	61	12	4	490	QRC110
160	150	16	188	212	86	16	4,5	1240	QRC160
225	200	16	245	273	119	25	5,5	1750	QRC225

QHV/X
Junta plana en EPDM y FPM para uniones de bridas según DIN 2501, EN 1092

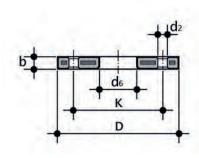
d	DN	А	В	Sp	Código EPDM	Código FPM
20 1/2"	15	20	32	2	QHVX020E	QHVX020F
25 3/4"	20	24	38,5	2	QHVX025E	QHVX025F
32 1"	25	32	48	2	QHVX032E	QHVX032F
40 1" 1/4	32	40	59	2	QHVX040E	QHVX040F
50 1"1/2	40	50	71	2	QHVX050E	QHVX050F
63 2"	50	63	88	2	QHVX063E	QHVX063F
75 2" 1/2	65	75	104	2	QHVX075E	QHVX075F
90 3"	80	90	123	2	QHVX090E	QHVX090F
110 4"	100	110	148	3	QHVX110E	QHVX110F
125	125	125	166	3	QHVX125E	QHVX125F
140	125	140	186	3	QHVX140E	QHVX140F
160 6"	150	160	211	3	QHVX160E	QHVX160F
200	200	200	252	4	QHVX200E	QHVX200F
225 8"	200	225	270	4	QHVX225E	QHVX225F


Nota: para asientos planos QHV/X d 250, ver el catálogo accesorios de PVC-U

ODC Brida loca de PVC-C para manguito portabridas QRC EN/ISO/DIN. Agujeros: PN10 hasta DN100

d	DN	*PMA (bar)	М	D	d_2	d6	К	**(Nm)	n	b	g	Código
20	15	10	M12 x 70	96	14	28	65	10	4	11	66	ODC020
25	20	10	M12 x 70	107	14	34	75	10	4	12	93	ODC025
32	25	10	M12 x 70	116	14	42	85	10	4	14	122	ODC032
40	32	10	M16 x 85	142	18	51	100	13	4	15	200	ODC040
50	40	10	M16 x 85	153	18	62	110	13	4	16	245	ODC050
63	50	10	M16 x 95	168	18	78	125	15	4	18	310	ODC063
75	65	10	M16 x 95	188	18	91	145	17	4	19	425	ODC075
90	80	10	M16 x 105	199	18	109	160	18	8	20	455	ODC090
110	100	10	M16 x 105	219	18	132	180	20	8	22	545	ODC110

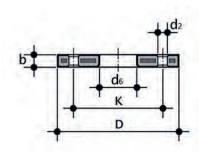
*PMA presión de funcionamiento máxima admisible **momento de apriete nominal



ODB

Brida loca de acero recubierto de PP/FRP según EN/ISO/DIN para manguitos portabridas QRC. Agujeros PN 10/16 hasta DN 150

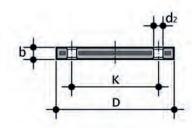
d	DN	*PMA (bar)	b	D	d ₂	d6	k	М	n	**(Nm)	g	Código
20	15	16	12	95	14	28	65	M12	4	15	290	ODB020
25	20	16	14	105	14	34	75	M12	4	15	410	ODB025
32	25	16	14	115	14	42	85	M12	4	15	610	ODB032
40	32	16	16	140	18	51	100	M16	4	20	880	ODB040
50	40	16	16	150	18	62	110	M16	4	25	810	ODB050
63	50	16	19	165	18	78	125	M16	4	35	940	ODB063
75	65	16	19	185	18	92	145	M16	4	40	1210	ODB075
90	80	16	21	200	18	109	160	M16	8	40	1480	ODB090
**125	100	16	22	220	18	134	180	M16	8	40	1570	ODB125


"valores de máxima presión admisible según EN/ISO/DIN.
""momento de apriete nominal
""para utilizar con manguitos portabridas QRC110
"""para utilizar con manguitos portabridas QRC160

ODB-SWBrida loca de acero recubierto de PP/FRP según EN/ISO/DIN para manguitos portabridas

d	DN	*PMA (bar)	b	D	d ₂	d6		М	**(Nm)		g	Código
225	200	16	27	340	22	247	295	M20	75	8	5060	ODBD225DN200

*PMA presión de funcionamiento máxima admisible **momento de apriete nominal



OAB

Brida loca de acero recubierto de PP/FRP ANSI B16.5 cl.150 para manguito portabridas QRC $\,$

d (inch)	DN	*PMA (bar)	b	D	d ₂ mm	d ₂ inch	d ₆	kmm	k inch	**(Nm)	n	g	Código
1/2"	15	16	12	95	16	5/8"	28	60,45	2"3/8	15	4	220	OAB012
3/4"	20	16	12	102	16	5/8"	34	69,85	2"3/4	15	4	240	OAB034
1"	25	16	16	114	16	5/8"	42	79,25	3"1/8	15	4	390	OAB100
1"1/4	32	16	16	130	16	5/8"	51	88,90	3"1/2	25	4	510	OAB114
1"1/2	40	16	18	133	16	5/8"	62	98,55	3"7/8	35	4	580	OAB112
2"	50	16	18	162	20	3/4"	78	120,65	4"3/4	35	4	860	OAB200
2"1/2	65	16	18	184	20	3/4"	92	139,70	5"1/2	40	4	1100	OAB212
3"	80	16	18	194	20	3/4"	111	152,40	6"	40	4	1040	OAB300
4"	100	16	18	229	20	3/4"	133	190,50	7"1/2	40	8	1620	OAB400

*PMA presión de funcionamiento máxima admisible **momento de apriete nominal

OABC

Brida ciega de acero recubierto de PP/FRP ANSI B16.5 cl.150

d (inch)	DN	*PMA (bar)	В	D	d ₂ mm	d ₂ inch	Kmm	Kinch	**(Nm)	n	g	Código
1/2"	15	16	12	95	16	5/8"	60,45	2"3/8	15	4	200	OABC012
3/4"	20	16	12	102	16	5/8"	69,85	2"3/4	15	4	240	OABC034
1"	25	16	16	114	16	5/8"	79,25	3"1/8	15	4	370	OABC100
1"1/4	32	16	16	130	16	5/8"	88,90	3"1/2	25	4	530	OABC114
1"1/2	40	16	18	133	16	5/8"	98,55	3"7/8	35	4	560	OABC112
2"	50	16	18	162	20	3/4"	120,65	4"3/4	35	4	810	OABC200
2"1/2	65	16	18	184	20	3/4"	139,70	5"1/2	40	4	1070	OABC212
3"	80	16	18	194	20	3/4"	152,40	6"	40	4	1030	OABC300
4"	100	16	18	229	20	3/4"	190,50	7"1/2	40	8	1570	OABC400

*PMA presión de funcionamiento máxima admisible **momento de apriete nominal

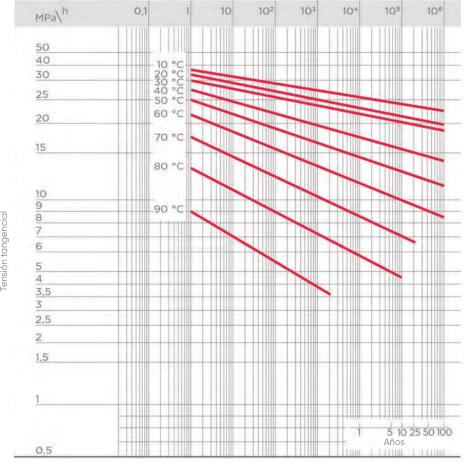
ACESORIOS ISO-BSP

PVC-C

Accesorios TemperFIP100® mixtos

ACESORIOS ISO-BSP

Serie de accesorios destinados al transporte de fluidos bajo presión con sistema de unión mediante rosca y soldadura química en frío (encolado) a través del uso de cola (TemperGLUE WELDON) y limpiador.

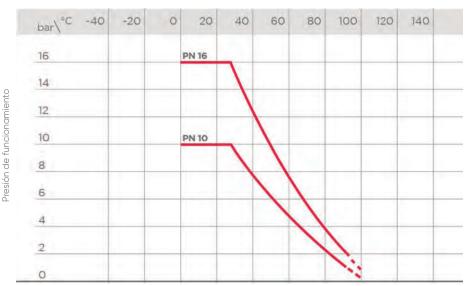

ACESORIOS MIXTOS

Especificaciones técnicas	
Gama dimensional	d 16 ÷ 63 (mm); R 3/8" ÷ 2"
Presión nominal	PN 16 con agua a 20° C
Rango de temperatura	0 °C ÷ 100 °C
Estándares de unión	Encolado: EN ISO 15493 unibles con tubos según EN ISO 15493
	Roscado: ISO 228-1, DIN 2999
Referencias normativas	Criterios constructivos: EN ISO 15493
	Métodos y requisitos de las pruebas: EN ISO 15493
	Criterios de instalación: DVS 2204, DVS 2221, UNI 11242
Material accesorios	PVC-C
Material de las juntas	EPDM, FKM

DATOS TÉCNICOS

CURVAS DE REGRESIÓN PARA ACESORIOS DE PVC-C

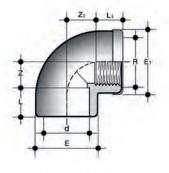
Coeficientes de regresión de acuerdo con EN ISO 15493 para valores de MRS (mínimo) = 20 N/ mm2 (MPa).


Vida útil

VARIACIÓN DE LA PRESIÓN EN FUNCIÓN DE LA TEMPERATURA

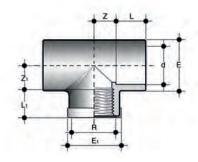
Para agua o fluidos no peligrosos para los cuales el material está clasificado como QUÍMICAMENTE RESISTENTE (expectativa de vida 25 años). En otros casos es necesaria una disminución adecuada de la presión nominal PN.

Nota


Para el empleo del PVC-C con temperaturas de funcionamiento superiores a 90°, se aconseja ponerse en contacto con el servicio técnico.

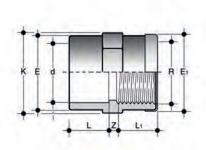
Temperatura de funcionamiento

Los datos de este catálogo se suministran de buena fe. FIP no asume ninguna responsabilidad por los datos no derivados directamente de normas internacionales. FIP se reserva el derecho de aportar cualquier modificación. La instalación y el mantenimiento del producto deben ser realizados por personal cualificado.


DIMENSIONES

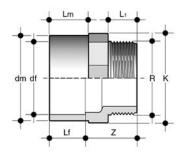
GIMC

Codo en 90° para encolar hembra, rosca R hembra y BSP dotada de anillo de refuerzo de acero INOX


dxR	PN	Е	E,	L	Ц.	Z	Z ₁	g	Código
16 x 3/8"	16	23,5	24,5	14	11,4	10	13	22	GIMC016038
20 x 1/2"	16	28,5	29,5	16	15	12	13	33	GIMC020012
25 x 3/4"	16	35	36	19	16,3	14	17	53	GIMC025034
32 x 1"	16	43	44	22	19,1	18	20,5	94	GIMC032100
40 x 1"1/4	16	50	51	26	21,4	22	27	104	GIMC040114
50 x 1"1/2	16	61	62	31	21,4	27	37	203	GIMC050112
63 x "2	16	76	77	38	25,7	33	46	380	GIMC063200

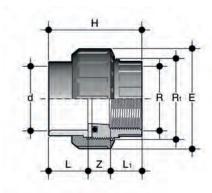
TIMC

T a 90° para encolar hembra, rosca R hembra y BSP dotada de anillo de refuerzo de acero INO \mathbf{X}


d x R	PN	Е	E,	L	Ц	Z	Z ₁	g	Código
16 x 3/8"	16	23,5	24,5	14	11,4	9	11	25	TIMC016038
20 x 1/2"	16	28,5	29,5	16	15	12	13	40	TIMC020012
25 x 3/4"	16	35	36	19	16,3	15	17	63	TIMC025034
32 x 1"	16	43	44	22	19,1	18	21	118	TIMC032100
40 x 1"1/4	16	50	51	26	21,4	21,5	27	137	TIMC040114
50 x 1"1/2	16	61	62	31	21,4	27	37	231	TIMC050112
63 x 2"	16	76	77	38	25,7	33,5	46	457	TIMC063200

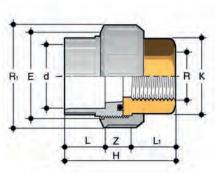
MIMC

Manguito encolar hembra, rosca r hembra y BSP dotada de anillo de refuerzo de acero INOX


dxR	PN	Е	E,	K	L	4	Z	g	Código
16 x 3/8"	16	23,5	24,5	24	14	11,4	5,6	15	MIMC016038
20 x 1/2"	16	28,5	29,5	29	16	15	4	25	MIMC020012
25 x 3/4"	16	35	36	35	19	16,3	5	38	MIMC025034
32 x 1"	16	43	44	43	22	19,1	6	58	MIMC032100
40 x 1"1/4	16	50	51	50	26	21,4	5	66	MIMC040114
50 x 1"1/2	16	61	62	61	31	21,4	8	109	MIMC050112
63 x 2"	16	76	77	76	38	25,7	7,5	196	MIMC063200

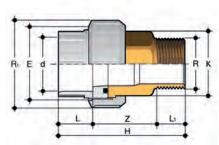
KIEC

Adaptador encolar macho (dm), encolar hembra (df) por el mismo lado y rosca hembra BSP por el otro


$dm \times df \times R$	PN			Lf	Lm		g	Código
20 x 16 x 3/8"	16	24	11,4	14	16	25,5	7	KIFC020016038
25 x 20 x 1/2"	16	30	15	16	19	30	16	KIFC025020012
32 x 25 x 3/4"	16	34	16,3	19	22	27,5	23	KIFC032025034
40 x 32 x 1"	16	42	19,1	22	26	32	38	KIFC040032100
50 x 40 x 1"1/4	16	52	21,4	26	31	35,5	65	KIFC050040114
63 x 50 x 1"1/2	16	65	21,4	31	38	39,5	113	KIFC063050112
75 x 63 x 2"	16	75	25,7	38	44	41	158	KIFC075063200

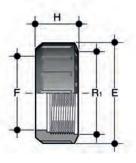
BIFC

Unión 3 piezas para encolar hembra, rosca R hembra BSP y junta tórica en EPDM


d x R	R ₁	PN	Е	Н	L	4	Z	g	Código
16 x 3/8"	3/4"	16	33	41	14	11,4	15,6	25	BIFC016038E
20 x 1/2"	1"	16	41	45	16	15	14	40	BIFC020012E
25 x 3/4"	1"1/4	16	51	51	19	16,3	15,7	68	BIFC025034E
32 x 1"	1"1/2	16	58	57	22	19,1	15,9	93	BIFC032100E
40 x 1"1/4	2"	16	72	67	26	21,4	19,6	158	BIFC040114E
50 x 1"1/2	2"1/4	16	79	72	31	21,4	19,6	193	BIFC050112E
63 x 2"	2"3/4	16	98	88	38	25,7	24	345	BIFC063200E

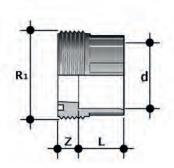
BIFOC

Unión 3 piezas mixto PVC-C/latón, con extremo d para encolar hembra, rosca R hembra BSP de latón, junta tórica en EPDM

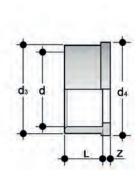

dxR	R_1	PN	Е	Н	K	L	Ц	Z	g	Código
16 x 3/8"	3/4"	16	33	45,5	20	14	13,5	18	55	BIFOC016038E
20 x 1/2"	1"	16	41	48,5	25	16	16,5	16	88,5	BIFOC020012E
25 x 3/4"	1"1/4	16	50	54,5	32	19	18,5	17	165	BIFOC025034E
32 x 1"	1"1/2	16	58	59,5	38	22	19,5	18	187	BIFOC032100E
40 x 1"1/4	2"	16	72	68,5	48	26	21,5	21	379	BIFOC040114E
50 x 1"1/2	2"1/4	16	79	84,5	55	31	23	30,5	475	BIFOC050112E
63 x 2"	2"3/4	16	98	94,5	69	38	27	29,5	837	BIFOC063200E

BIROC

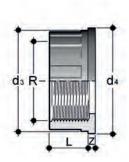
Unión 3 piezas mixto PVC-C/latón, con extremo d para encolar hembra, rosca R macho BSP de latón, junta tórica en EPDM


dxR	R ₁	PN	Е	Н	K	L	4	Z	g	Código
16 x 3/8"	3/4"	16	33	58,5	20	14	10,5	34	81	BIROC016038E
20 x 1/2"	1"	16	41	65	25	16	13,5	35,5	133,5	BIROC020012E
25 x 3/4"	1"1/4	16	50	72,5	32	19	15	38,5	223	BIROC025034E
32 x 1"	1"1/2	16	58	80	38	22	17,5	40,5	294	BIROC032100E
40 x 1"1/4	2"	16	72	91	48	26	19,5	45,5	558	BIROC040114E
50 x 1"1/2	2"1/4	16	79	101	55	31	19,5	50,5	696	BIROC050112E
63 x 2"	2"3/4	16	98	122,5	69	38	24	60,5	1196	BIROC063200E

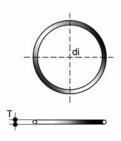
EFC


Tuerca con rosca hembra cilíndrica para uniones 3 piezas tipo BIC, BIFC, BFC, BIC, BIRC, BIFOC, BIROC, BIFXC, BIRXC

R ₁	d BIV	PN			Н	g	Código
3/4"	16	16	33	22	21	9	EFC034
1"	20	16	41	28	22	13	EFC100
1"1/4	25	16	50	36	25	22	EFC114
1"1/2	32	16	58	42	27	30	EFC112
2"	40	16	72	53	30	50	EFC200
2"1/4	50	16	79	59	34	68	EFC214
2"3/4	63	16	98	74	38	120	EFC234


F/BICParte fija para encolar, serie métrica

d		PN			g	Código
16	3/4"	16	14	10	9	FBIC016
20	1"	16	16	10	13	FBIC020
25	1"1/4	16	19	10	25	FBIC025
32	1"1/2	16	22	10	31	FBIC032
40	2"	16	26	12	58	FBIC040
50	2"1/4	16	31	14	63	FBIC050
63	2"3/4	16	38	19	119	FBIC063


Q/BICParte loca para encolar, serie métrica

d	PN	d ₃	d ₄			g	Código
16	16	22	24	14	3	5	QBIC016
20	16	27,5	30.1	16	3	10	QBIC020
25	16	36	38.8	19	3	16	QBIC025
32	16	41,5	44.7	22	3	23	QBIC032
40	16	53	56.5	26	3	40	QBIC040
50	16	59	62.6	31	3	44	QBIC050
63	16	74	78.4	38	3	82	QBIC063

Q/BFCParte loca para encolar, serie ASTM

R	PN	d ₃	d ₄			g	Código
3/8"	16	22	24	11,4	4,5	5	QBFC038
1/2"	16	27,5	30,1	15	5	9	QBFC012
3/4"	16	36	38,8	16,3	5	17	QBFC034
1"	16	41,5	44,7	19,1	5,5	23	QBFC100
1"1/4	16	53	56,5	21,4	5,5	37	QBFC114
1"1/2	16	59	62,6	21,4	5,5	44	QBFC112
2"	16	74	78,4	25,7	5,5	79	QBFC200

JUNTAS TÓRICASJuntas para uniones 3 piezas tipo BIC, BIFC, BIFOC, BIFXC, BIRXC

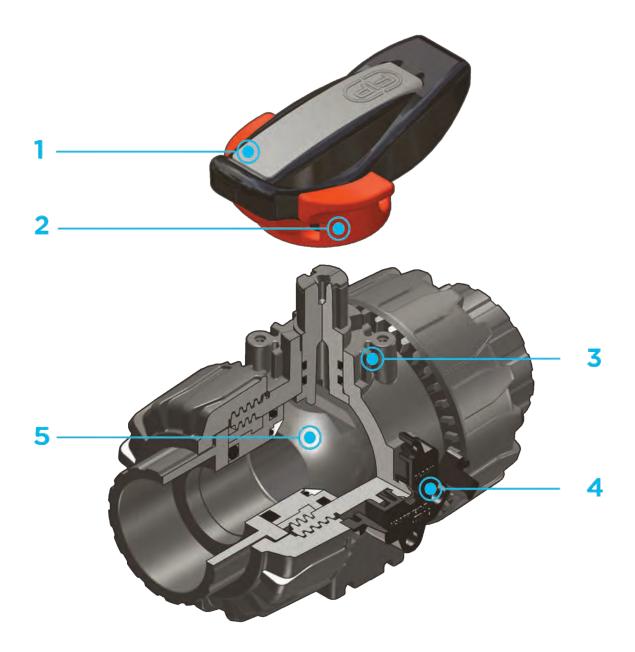
Union d	С	di	Т	Código EPDM	Código FPM
16	3062	15,54	2,62	OR3062E	OR3062F
20	4081	20,22	3,53	OR4081E	OR4081F
25	4112	28,17	3,53	OR4112E	OR4112F
32	4131	32,93	3,53	OR4131E	OR4131F
40	6162	40,65	5,34	OR6162E	OR6162F
50	6187	47	5,34	OR6187E	OR6187F
63	6237	59,69	5,34	OR6237E	OR6237F
75	6300	75,57	5,34	OR6300E	OR6300F
90	6362	91,45	5,34	OR6362E	OR6362F
110	6450	113,67	5,34	OR6450E	OR6450F

VKD DN 10÷50

PVC-C

Válvula de bola de 2 vías DUAL BLOCK®

VK□ **DN 10÷50**


FIP ha desarrollado una válvula de bola de 2 vías tipo VKD DUAL BLOCK® para introducir un elevado estándar de referencia en la concepción de las válvulas termoplásticas. VKD es una válvula de bola con dos tuercas, de desmontaje radial que responde a las más duras exigencias de las aplicaciones industriales.

VÁLVULA DE BOLA DE 2 VÍAS DUAL BLOCK®

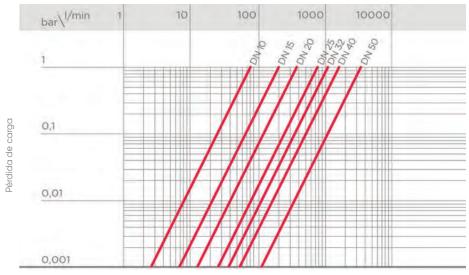
- Sistema de unión encolado, roscado y embridado.
- Sistema de sujeción de la bola patentado **SEAT STOP**®, que permite efectuar una microrregulación de las juntas y minimizar el efecto de los empujes axiales.
- Fácil desmontaje radial de la instalación y consiguiente rápida sustitución de las juntas tóricas y de los asientos de la bola sin emplear ninguna herramienta.
- Cuerpo de la válvula PN 16 de desmontaje radial (True union) realizado por moldeo de inyección de PVC-C dotado de agujeros integrados para la actuación. Requisitos de prueba de acuerdo con ISO 9393.
- Posibilidad de desmontaje de las tuberías aguas abajo con la válvula en posición de cierre.
- Bola de paso total de tipo flotante y de acabado superficial de alta calidad.
- Soporte integrado en el cuerpo para la fijación de la válvula.
- La regulación del soporte de la bola puede efectuarse mediante el kit de regulación Easytorque.
- Compatibilidad del material de la válvula (PVC-C) y de los elementos de estanqueidad de elastómero (EPDM o FPM), con el transporte de agua, agua potable y otras sustancias alimentarias según las normativas vigentes.

Especificaciones técnicas	
Construcción	Válvula de bola de 2 vías de desmontaje radial con soporte bloqueado y tuercas bloqueables
Gama dimensional	DN 10 ÷ 50
Presión nominal	PN 16 con agua a 20° C
Rango de temperatura	0 °C ÷ 100 °C
Estándares de unión	Encolado: EN ISO 15493, ASTM F 439. Unibles con tubos según EN ISO 15493, ASTM F 441
	Roscado: ISO 228-1, DIN 2999, ASTM F 437
	Embridado: ISO 7005-1, EN ISO 15493, EN 558-1, DIN 2501, ANSI B.16.5 cl. 150, JIS B 2220.
Referencias normativas	Criterios constructivos: EN ISO 16135, EN ISO 15493
	Métodos y requisitos de las pruebas: ISO 9393
	Criterios de instalación: DVS 2204, DVS 2221, UNI 11242
	Acoplamientos para actuadores: ISO 5211
Material de la válvula	PVC-C
Material de las juntas	EPDM, FPM (junta tórica de dimensiones estándar); PTFE (asientos de estanqueidad de la bola)
Opciones de comando	Mando manual; actuador eléctrico; actuador neumático

- Maneta multifuncional ergonómica de HIPVC dotada de llave extraíble para la regulación del soporte de los asientos de estanqueidad de la bola.
- 2 Bloqueo maneta 0° 90° SHKD (disponible como accesorio) ergonómicamente accionable durante la maniobra y que puede cerrarse con candado.
- Robusta **torre de anclaje** para una fácil y rápida automatización incluso después de la introducción de la válvula en la instalación mediante la ayuda del módulo Power Quick (opcional).
- 4 Sistema de bloqueo de las tuercas patentado **DUAL BLOCK®** que asegura el aguante del apriete de las tuercas incluso en caso de condiciones duras como vibraciones o dilataciones térmicas.

DATOS TÉCNICOS

VARIACIÓN DE LA PRESIÓN EN FUNCIÓN DE LA TEMPERATURA

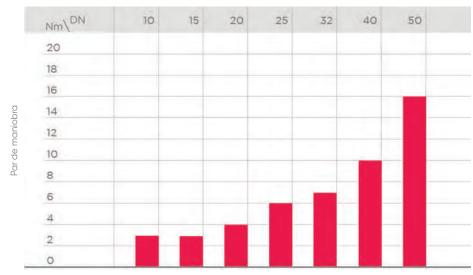

Para agua o fluidos no peligrosos para los cuales el material está clasificado como QUÍMICAMENTE RESISTENTE. En otros casos es necesaria una disminución adecuada de la presión nominal PN (25 años con factor de seguridad).

Nota: Para el empleo del PVC-C con temperaturas de funcionamiento superiores a 90°, se aconseja ponerse en contacto con el servicio técnico.

Temperatura de funcionamiento

DIAGRAMA DE PÉRDIDA DE CARGA

Caudal


COEFIC	CIENT	ΓΕ	DE
FLUJO	K _v 10	0	

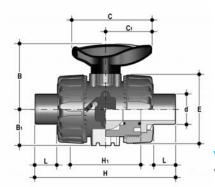
Por coeficiente de flujo k_v 100 se entiende el caudal Q en litros por minuto de agua a 20 °C que genera una pérdida de carga Δp = 1 bar para una determinada posición de la válvula.

Los valores k_v100 indicados en la tabla son para la válvula completamente abierta.

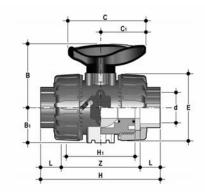

DN	10	15	10	25	32	40	50
k _v 100 I/	80	200	385	770	1100	1750	3400

PAR DE MANIOBRA A LA MÁXIMA PRESIÓN DE FUNCIONAMIENTO

Los datos de este catálogo se suministran de buena fe. FIP no asume ninguna responsabilidad por los datos no derivados directamente de normas internacionales. FIP se reserva el derecho de aportar cualquier modificación, La instalación y el mantenimiento del producto deben ser realizados por personal cualificado.


DIMENSIONES

VKDIC

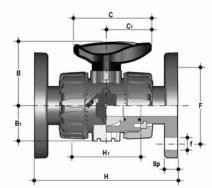

Válvula de bola de 2 vías DUAL BLOCK® con conexiones hembra para encolar, serie métrica

d	DN	PN	В	B ₁	С	C ₁	Е	Н	H ₁	L	Z	g	Código EPDM	Código FPM
16	10	16	54	29	67	40	54	103	65	14	75	234	VKDIC016E	VKDIC016F
20	15	16	54	29	67	40	54	103	65	16	71	223	VKDIC020E	VKDIC020F
25	20	16	65	34,5	85	49	65	115	70	19	77	358	VKDIC025E	VKDIC025F
32	25	16	69,5	39	85	49	73	128	78	22	84	476	VKDIC032E	VKDIC032F
40	32	16	82,5	46	108	64	86	146	88	26	94	753	VKDIC040E	VKDIC040F
50	40	16	89	52	108	64	98	164	93	31	102	1007	VKDIC050E	VKDIC050F
63	50	16	108	62	134	76	122	199	111	38	123	1717	VKDIC063E	VKDIC063F

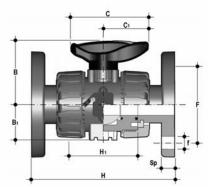
VKDDC Válvula de bola de 2 vías DUAL BLOCK® con conexiones macho para encolar, serie métrica

d	DN	PN			С	C ₁		Н			g	Código EPDM	Código FPM
20	15	16	54	29	67	40	54	124	65	16	239	VKDDC020E	VKDDC020F
25	20	16	65	34,5	85	49	65	144	70	19	369	VKDDC025E	VKDDC025F
32	25	16	69,5	39	85	49	73	154	78	22	482	VKDDC032E	VKDDC032F
40	32	16	82,5	46	108	64	86	174	88	26	753	VKDDC040E	VKDDC040F
50	40	16	89	52	108	64	98	194	93	31	1029	VKDDC050E	VKDDC050F
63	50	16	108	62	134	76	122	224	111	38	1749	VKDDC063E	VKDDC063F

VKDAC Válvula de bola de 2 vías DUAL BLOCK® con conexiones hembra para encolar, serie


d	DN	PN	В	B ₁	С	C ₁	Е	Н	H ₁	L	Z	g	Código EPDM	Código FPM
1/2"	15	16	54	29	67	40	54	117	65	22,5	72	234	VKDAC012E	VKDAC012F
3/4"	20	16	65	34,5	85	49	65	129	70	25,5	78	375	VKDAC034E	VKDAC034F
1"	25	16	69,5	39	85	49	73	142	78	28,7	84,6	487	VKDAC100E	VKDAC100F
1" 1/4	32	16	82,5	46	108	64	86	162	88	32	98	780	VKDAC114E	VKDAC114F
1" 1/2	40	16	89	52	108	64	98	172	93	35	102	1062	VKDAC112E	VKDAC112F
2"	50	16	108	62	134	76	122	199	111	38,2	122,6	1864	VKDAC200E	VKDAC200F

VKDNC


Válvula de bola de 2 vías DUAL BLOCK® con conexiones hembra, rosca NPT

R	DN	PN	В	B ₁	С	C ₁	Е	Н	H ₁	L	Z	g	Código EPDM	Código FPM
1/2"	15	16	54	29	67	40	54	111	65	17,8	75,4	228	VKDNC012E	VKDNC012F
3/4"	20	16	65	34,5	85	49	65	117	70	18	81	364	VKDNC034E	VKDNC034F
1"	25	16	69,5	39	85	49	73	135	78	22,6	89,8	487	VKDNC100E	VKDNC100F
1" 1/4	32	16	82,5	46	108	64	86	153	88	25,1	102,8	737	VKDNC114E	VKDNC114F
1" 1/2	40	16	89	52	108	64	98	156	93	24,7	106,6	1040	VKDNC112E	VKDNC112F
2"	50	16	108	62	134	76	122	186	111	29,6	126,8	1815	VKDNC200E	VKDNC200F

Válvula de bola de 2 vías DUAL BLOCK® con bridas fijas, agujeros EN/ISO/DIN PN10/16. Diámetro según norma EN 558-1

d	DN	PN	В	B ₁	С	C ₁	F	f	Н	H,	Sp	U	g	Código EPDM	Código FPM
20	15	16	54	29	67	40	65	14	130	65	11	4	488,1	VKDOC020E	VKDOC020F
25	20	16	65	34,5	85	49	75	14	150	70	13,5	4	663,1	VKDOC025E	VKDOC025F
32	25	16	69,5	39	85	49	85	14	160	78	14	4	895,9	VKDOC032E	VKDOC032F
40	32	16	82,5	46	108	64	100	18	180	88	14	4	1379	VKDOC040E	VKDOC040F
50	40	16	89	52	108	64	110	18	200	93	16	4	1761	VKDOC050E	VKDOC050F
63	50	16	108	62	134	76	125	18	230	111	16	4	2741	VKDOC063E	VKDOC063F

VKDOAC Válvula de bola de 2 vías DUAL BLOCK® con bridas fijas, agujeros ANSI B.16.5 cl.150 #FF

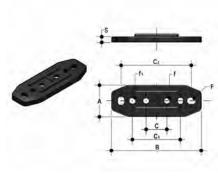
d	DN	PN	В	B ₁	С	C ₁	F	f	Н	H ₁	Sp	U	g	Código EPDM	Código FPM
1/2"	15	16	54	29	67	40	60,3	15,9	143	65	11	4	481,1	VKDOAC012E	VKDOAC012F
3/4"	20	16	65	34,5	85	49	69,9	15,9	172	70	13,5	4	663,1	VKDOAC034E	VKDOAC034F
1"	25	16	69,5	39	85	49	79,4	15,9	187	78	14	4	895,9	VKDOAC100E	VKDOAC100F
1" 1/4	32	16	82,5	46	108	64	88,9	15,9	190	88	14	4	1379	VKDOAC114E	VKDOAC114F
1" 1/2	40	16	89	52	108	64	98,4	15,9	212	93	16	4	1761	VKDOAC112E	VKDOAC112F
2"	50	16	108	62	134	76	120,7	19,1	234	111	16	4	2741	VKDOAC200E	VKDOAC200F

ACCESORIOS

d

CVDE

Conectores de PE100 largos, para soldaduras con manguitos electrosoldables o a tope


d	DN	PN		SDR	Código
20	15	16	55	11	CVDE11020
25	20	16	70	11	CVDE11025
32	25	16	74	11	CVDE11032
40	32	16	78	11	CVDE11040
50	40	16	84	11	CVDE11050
63	50	16	91	11	CVDE11063

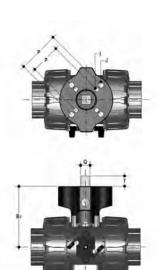
SHKD

Kit bloqueo maneta 0° - 90° que puede cerrarse con candado

d	DN	Código
16 20	10 15	SHKD020
25 32	20 25	SHKD032
40 50	32 40	SHKD050
63	50	SHKD063

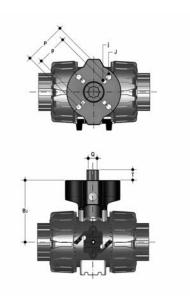
PMKD

Placa de montaje mural


d	DN	А	В	С	C ₁	C ₂	F	f	f	S	Código
16	10	30	86	20	46	67,5	6,5	5,3	5,5	5	PMKD1
20	15	30	86	20	46	67,5	6,5	5,3	5,5	5	PMKD1
25	20	30	86	20	46	67,5	6,5	5,3	5,5	5	PMKD1
32	25	30	86	20	46	67,5	6,5	5,3	5,5	5	PMKD1
40	32	40	122	30	72	102	6,5	6,3	6,5	6	PMKD2
50	40	40	122	30	72	102	6,5	6,3	6,5	6	PMKD2
63	50	40	122	30	72	102	6,5	6,3	6,5	6	PMKD2

PSKD

Eje de prolongación


d	DN		A ₁	A ₂					Código
16	10	32	25	32	54	70	29	139,5	PSKD020
20	15	32	25	32	54	70	29	139,5	PSKD020
25	20	32	25	40	65	89	34,5	164,5	PSKD025
32	25	32	25	40	73	93,5	39	169	PSKD032
40	32	40	32	50	86	110	46	200	PSKD040
50	40	40	32	50	98	116	52	206	PSKD050
63	50	40	32	59	122	122	62	225	PSKD063

Power Quick/CP
La válvula puede equiparse con actuadores neumáticos, mediante un módulo de PP-GR que reproduce la plantilla de perforación prevista por la norma ISO 5211

d	DN		Q		рхј		Código
16	10	58	11	12	F03 x 5,5	F04 x 5,5	PQCP020
20	15	58	11	12	F03 x 5,5	F04 x 5,5	PQCP020
25	20	69	11	12	*F03 x 5,5	F05 x 6,5	PQCP025
32	25	74	11	12	*F03 x 5,5	F05 x 6,5	PQCP032
40	32	91	14	16	F05 x 6,5	F07 x 8,5	PQCP040
50	40	97	14	16	F05 x 6,5	F07 x 8,5	PQCP050
63	50	114	14	16	F05 x 6,5	F07 x 8,5	PQCP063

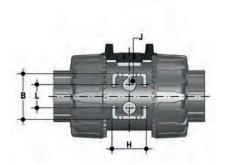
*F04 x 5.5 bajo pedido

Power Quick/CE
La válvula puede equiparse con actuadores eléctricos, mediante un módulo de PP-GR que reproduce la plantilla de perforación prevista por la norma ISO 5211

d	DN	$B_{\!\scriptscriptstyle 2}$	Q	Т	рхј	PxJ	Código
16	10	58	14	16	F03 x 5,5	F04 x 5,5	PQCE020
20	15	58	14	16	F03 x 5,5	F04 x 5,5	PQCE020
25	20	69	14	16	*F03 x 5,5	F05 x 6,5	PQCE025
32	25	74	14	16	*F03 x 5,5	F05 x 6,5	PQCE032
40	32	91	14	16	F05 x 6,5	F07 x 8,5	PQCE040
50	40	97	14	16	F05 x 6,5	F07 x 8,5	PQCE050
63	50	114	14	16	F05 x 6,5	F07 x 8,5	PQCE063

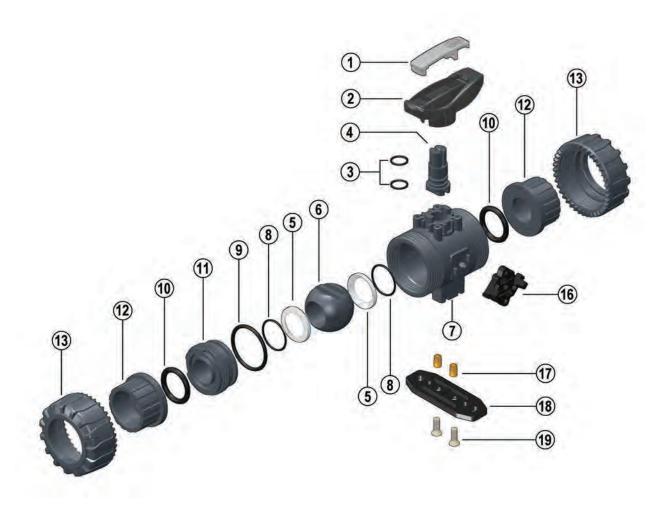
*F04 x 5.5 bajo pedido

EMBRIDADO Y FIJACIÓN



La serie de válvulas VKD está dotada con soportes integrados que permiten un anclaje directo en el cuerpo de la válvula sin necesidad de otros componentes. Para la instalación en la pared o en un panel es posible utilizar la correspondiente placa de montaje PMKD, suministrada como accesorio, que debe fijarse antes a la

La placa de montaje PMKD sirve también para alinear la válvula VKD con las abrazaderas de tubería FIP tipo ZIKM y para alinear válvulas de diferentes



d	DN	g			J*
16	10	31,5	27	20	M4 x 6
20	15	31,5	27	20	M4 x 6
25	20	40	30	20	M4 x 6
32	25	40	30	20	M4 x 6
40	32	50	35	30	M6 x 10
50	40	50	35	30	M6 x 10
63	50	60	40	30	M6 x 10

*Con insertos roscados

COMPONENTES

DESPIECE

- 1 Inserto maneta (PVC-U 1).
- 2 Maneta (HIPVC-1).
- Junta tórica eje de comando (EPDM o FPM-2)*.
- 4 Eje de comando (PVC-C-1).
- 5 Asiento de estanqueidad de la bola (PTFE 2)*.
- 6 Bola (PVC-C-1).
- 7 Cuerpo (PVC-C-1).

- Junta tórica del asiento de estanqueidad de la bola (EPDM o FPM-2)*.
- Junta tórica de estanqueidad radial (EPDM o FPM-1)*.
- Junta tórica de estanqueidad del manguito (EPDM o FPM-2)*.
- 11 Soporte de la junta de la bola (PVC-C-1).
- 12 Manguito (PVC-C-2)*.
- 13 Tuerca (PVC-C-2).

- Muelle (Acero INOX 1)**.
- 15 Kit de seguridad para maneta (PP-GR 1)**.
- 16 DUAL BLOCK® (POM 1).
- 17 Insertos roscados (Acero INOX o Latón 2)**.
- 18 Pletina separadora de montaje (PP-GR 1)**.
- 9 Tornillo (Acero INOX 2).

Entre paréntesis se indica el material del componente y la cantidad suministrada

^{*}Repuestos

^{**}Accesorios

DESMONTAJE

- 1) Aislar la válvula de la línea (quitar la presión y vaciar la tubería).
- 2) Desbloquear las tuercas presionando la palanca del DUAL BLOCK® (16) en dirección axial alejándola de la tuerca (fig. 1-2). ES posible, de todas formas, retirar completamente del cuerpo de la válvula el dispositivo de bloqueo.
- 3) Desenroscar completamente las tuercas (13) y extraer lateralmente el cuerpo.
- 4) Antes de desmontar la válvula, hay que drenar los posibles residuos de líquido que hayan quedado en su interior abriendo en 45° la válvula en posición vertical.
- 5) Después de haber colocado la válvula en posición de cierre, extraer de la maneta (2) el inserto correspondiente (1) e introducir los dos salientes en las correspondientes aberturas del soporte de la junta de la bola (11), extrayéndola con una rotación en el sentido contrario a las agujas del reloj (fig. 3-4).
- 6) Tirar de la maneta (2) hacia arriba para extraerla del eje de comando (4).
- 7) Presionar la bola por el lado opuesto al del rótulo "REGÚLAR ADJUST", prestando atención a no rayarla, hasta obtener la salida del soporte de la junta de la bola (11), después, extraer la bola (6).
- 8) Presionar el eje de comando (4) hacia el interior y extraerlo del cuerpo.
- 9) Retirar las juntas tóricas (3, 8, 9, 10) y los asientos de estanqueidad de la bola de PTFE (5) extrayéndolos de su alojamiento, como se indica en el despiece.

MONTAJE

- Todas las juntas tóricas (3, 8, 9, 10) deben introducirse en sus alojamientos, como indica el despiece.
- 2) Introducir el eje de comando (4) desde el interior del cuerpo (7).
- 3) Introducir los asientos de estanqueidad de la bola de PTFE (5) en los correspondientes alojamientos del cuerpo (7) y de la abrazadera (11).
- 4) Introducir la bola (6) y girarla en posición de cierre.
- 5) Introducir la abrazadera (11) en el cuerpo y enroscar hasta el tope en el sentido de las agujas del reloj utilizando la maneta (2).
- 6) Introducir la válvula entre los manguitos (12) y apretar las tuercas (13) prestando atención a que las juntas tóricas de estanqueidad del manguito (10) no sobresalgan de sus alojamientos
- 7) Colocar la maneta (2) en el eje de comando (4).

Nota: en las operaciones de montaje, se aconseja lubricar las juntas de goma. Para ello, se recuerda que no es adecuado el uso de aceites minerales, que resultan agresivos para la iunta EPDM.

Fig. 1

Fia 2

Fig. 3

Fig. 4

INSTALACIÓN

Antes de proceder a la instalación, seguir atentamente las instrucciones de montaje:

- 1) Verificar que las tuberías a las que se debe conectar la válvula estén alineadas para evitar esfuerzos mecánicos sobre las conexiones roscadas de la misma.
- 2) Verificar que en el cuerpo de la válvula esté instalado el sistema de bloqueo de las tuercas DUAL BLOCK® (16).
- Desbloquear las tuercas presionando axialmente sobre la palanca de desbloqueo correspondiente para alejar el bloqueo de la tuerca y desenroscar después la misma en el sentido contrario a las agujas del reloj.
- 4) Proceder con el desenroscado de las tuercas (13) y con la introducción de las mismas en los tramos de tubo.
- 5) Proceder al encolado o soldadura o enroscado de los manguitos (12) en los tramos de tubo.
- 6) Colocar el cuerpo de la válvula entre los manguitos y apretar completamente las tuercas (13) a mano en el sentido de las agujas del reloj, sin utilizar llaves u otras herramientas que pudieran dañar la superficie de las tuercas.
- 7) Bloquear las tuercas volviendo a colocar el DUAL BLOCK® en su alojamiento correspondiente, presionándolo para que los dos fijadores enganchen las tuercas.
- 8) Si fuera necesario, sujetar la tubería mediante abrazaderas de tubería FIP o mediante el soporte integrado en la válvula (ver el apartado "Embridado y fijación").

La válvula VKD puede dotarse de un bloqueo maneta para bloquear la rotación de la bola (suministrado por separado).

Cuando está instalado (14, 15) el bloqueo, hay que elevar la palanca (15) y efectuar la rotación de la maneta (fig. 6-7).

Además, es posible instalar un candado en la maneta para evitar que la instalación sufra manipulaciones (fig. 8).

La regulación de las juntas puede efectuarse utilizando el inserto extraíble que se encuentra en la maneta (fig. 3-4).

Una segunda regulación de las juntas se puede realizar con la válvula instalada en la tubería simplemente apretando aun más las tuercas. Tal "microrregulación", posible solo con las válvulas FIP gracias al sistema patentado "Seat stop system", permite recuperar la estanqueidad, allí donde se hubiera producido un desgaste excesivo de los asientos de estanqueidad de la bola de PTFE debido al desgaste por un elevado número de maniobras.

Las operaciones de microrregulación pueden realizarse también con el kit Easytorque (fig. 5).

ADVERTENCIAS

- $^{\circ}$ En caso de uso de líquidos volátiles como por ejemplo peróxido de hidrógeno ($\mathrm{H_2O_2}$) o hipoclorito sódico (NaClO), se aconseja, por razones de seguridad, ponerse en contacto con el servicio técnico. Tales líquidos, al vaporizarse, podrían crear sobrepresiones peligrosas en la zona entre cuerpo y bola.
- Evitar maniobras bruscas de cierre y proteger la válvula contra maniobras accidentales.

ıg./

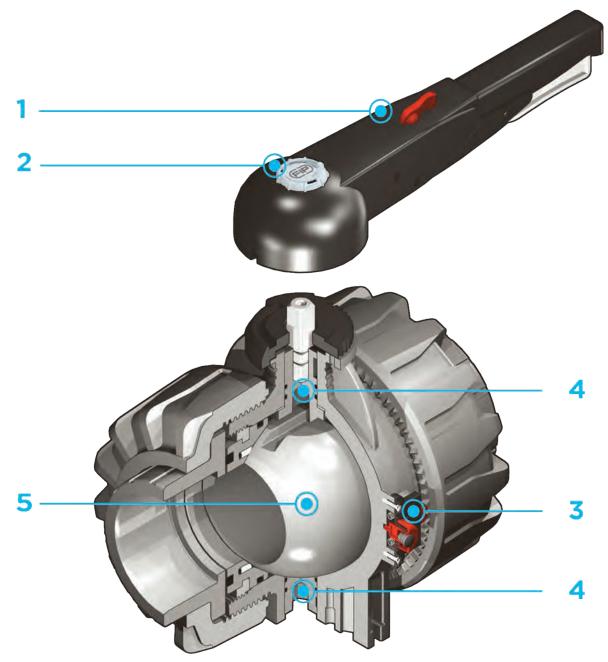
Fig.8

VKD DN 65÷100

PVC-C

Válvula de bola de 2 vías DUAL BLOCK®

VK□ **DN 65÷100**


FIP ha desarrollado una válvula de bola tipo VKD DUAL BLOCK® para introducir un elevado estándar de referencia en la concepción de las válvulas termoplásticas. VKD es una válvula de bola con dos tuercas, de desmontaje radial que responde a las más duras exigencias de las aplicaciones industriales. Además, esta válvula está dotada de sistema de personalización Labelling System.

VÁLVULA DE BOLA DE 2 VÍAS Y DUAL BLOCK®

- Sistema de unión encolado, roscado y embridado.
- Sistema de sujeción de la bola patentado **SEAT STOP**®, que permite efectuar una microrregulación de las juntas y minimizar el efecto de los empujes axiales.
- Fácil desmontaje radial de la instalación y consiguiente rápida sustitución de las juntas tóricas y de los asientos de la bola sin emplear ninguna herramienta.
- Cuerpo de la válvula PN 16 de desmontaje radial (True union) realizado por moldeo de inyección de PVC-C dotado de agujeros integrados para la actuación. Requisitos de prueba de acuerdo con ISO 9393.
- Posibilidad de desmontaje de las tuberías aguas abajo con la válvula en posición de cierre.
- Bola de paso total de acabado superficial de alta calidad.
- Soporte integrado en el cuerpo para la fijación de la válvula.
- Posibilidad de instalar un reductor manual o actuadores neumáticos o eléctricos mediante la instalación de una brida de PP-GR de agujeros estándar ISo.
- **Eje sumergido de acero INOX,** de sección cuadrada de acuerdo con la norma ISO 5211.
- Compatibilidad del material de la válvula (PVC-C) y de los elementos de estanqueidad de elastómero (EPDM o FPM), con el transporte de agua, agua potable y otras sustancias alimentarias según las normativas vigentes.

Especificaciones técnicas	
Construcción	Válvula de bola de 2 vías de desmontaje radial con soporte y tuercas bloqueadas
Gama dimensional	DN 65 ÷ 100
Presión nominal	PN 16 con agua a 20 °C
Rango de temperatura	0 °C ÷ 100 °C
Estándares de unión	Encolado: EN ISO 15493, ASTM F 439. Unibles con tubos según EN ISO 15493, ASTM F 441
	Roscado: ISO 228-1, DIN 2999, ASTM F 437.
	Embridado: ISO 7005-1, EN ISO 15493 EN 558-1, DIN 2501, ANSI B.16.5 cl.150, JIS B 2220.
Referencias normativas	Criterios constructivos:: EN ISO 16135, EN ISO 15493
	Métodos y requisitos de las pruebas: ISO 9393
	Criterios de instalación: DVS 2204, DVS 2221, UNI 11242
	Acoplamientos para actuadores: ISO 5211
Material de la válvula	PVC-C
Material de las juntas	EPDM, FPM; PTFE (asientos de estanqueidad de la bola)
Opciones de comando	Mando manual; actuador eléctrico; actuador neumático

- Maneta multifuncional ergonómica de HIPVC con posibilidad de maniobra rápida, bloqueo y regulación graduada en 10 posiciones. Posibilidad de bloquear la rotación colocando un candado.
- 2 Sistema de personalización Labelling System: módulo LCE integrado en el cubo compuesto de tapón de protección

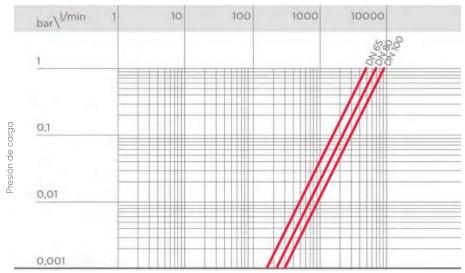
transparente y de placa portaetiquetas personalizable mediante el paquete LSE (disponible como accesorio). La posibilidad de personalización permite identificar la válvula en la instalación en función de exigencias específicas.

Sistema de bloqueo de las tuercas patentado **DUAL BLOCK®** que asegura el aguante del apriete de las tuercas incluso en caso de condiciones duras como vibraciones o dilataciones térmicas.

Doble eje de comando con dobles juntas tóricas para el centrado de la bola y la reducción de los pares de maniobra.

DATOS TÉCNICOS

VARIACIÓN DE LA PRESIÓN EN FUNCIÓN DE LA TEMPERATURA

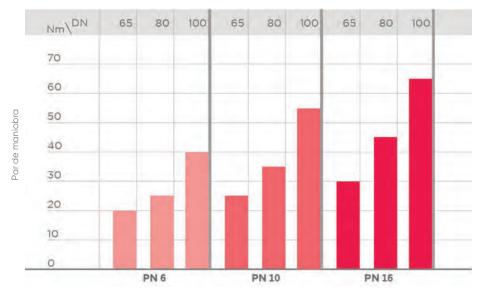

Para agua o fluidos no peligrosos para los cuales el material está clasificado como QUÍMICAMENTE RESISTENTE. En otros casos es necesaria una disminución adecuada de la presión nominal PN (25 años con factor de seguridad).

Nota: Para el empleo del PVC-C con temperaturas de funcionamiento superiores a 90°, se aconseja ponerse en contacto con el servicio técnico.

Temperatura de funcionamiento

DIAGRAMA DE PÉRDIDA DE CARGA

Caudal


COEFICIENTE DE FLUJO K_v100

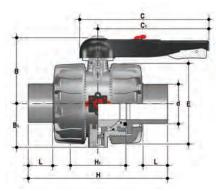
Por coeficiente de flujo k_v 100 se entiende el caudal Q en litros por minuto de agua a 20 °C que genera una pérdida de carga Δp = 1 bar para una determinada posición de la válvula.

los valores k_v100 indicados en la tabla son para la válvula completamente abierta.

DN	65	80	100
k _v 100 I/min	5250	7100	9500

PAR DE MANIOBRA A LA MÁXIMA PRESIÓN DE FUNCIONAMIENTO

Los datos de este catálogo se suministran de buena fe. FIP no asume ninguna responsabilidad por los datos no derivados directamente de normas internacionales. FIP se reserva el derecho de aportar cualquier modificación. La instalación y el mantenimiento del producto deben ser realizados por personal cualificado.

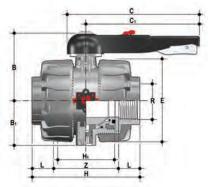

DIMENSIONES

VKDIC

Válvula de bola de 2 vías DUAL BLOCK® con conexiones hembra para encolar, serie métrica

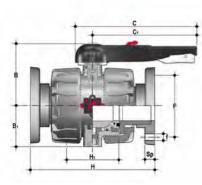
d	DN	PN			С	C ₁		Н				g	Código EPDM	Código FPM
75	65	16	164	87	225	175	164	235	133	44	147	4750	VKDIC075E	VKDIC075F
90	80	16	177	105	327	272	203	270	149	51	168	7838	VKDIC090E	VKDIC090F
110	100	16	195	129	385	330	238	308	167	61	186	12137	VKDIC110E	VKDIC110F

VKDDC


Válvula de bola de 2 vías DUAL BLOCK® con conexiones macho para encolar, serie métrica

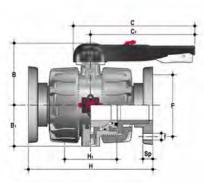
d	DN	PN			С	C ₁		Н			g	Código EPDM	Código FPM
75	65	16	164	87	225	175	164	235	133	44	4789	VKDDC075E	VKDDC075F
90	80	16	177	105	327	272	203	270	149	51	7691	VKDDC090E	VKDDC090F
110	100	16	195	129	385	330	238	308	167	61	11931	VKDDC110E	VKDDC110F

VKDAC


C	d DN	PN			С	C_1		H				g	Código EPDM	Código FPM
2"1/:	2 60	16	164	87	225	175	164	235	133	44,5	146	4762	VKDAC212E	VKDAC212F
3	" 80	16	177	105	327	272	203	270	149	48	174	7850	VKDAC300E	VKDAC300F
4	" 100	16	195	129	385	330	238	308	167	57,5	193	12222	VKDAC400E	VKDAC400F

VKDNC

Válvula de bola de 2 vías DUAL BLOCK® con conexiones hembra, rosca cilíndrica NPT


R	DN	PN			С	C ₁		Н				g	Código EPDM	Código FPM
2" 1/2	65	16	164	87	225	175	164	235	133	33,2	168,6	4769	VKDNC212E	VKDNC212F
3"	80	16	177	105	327	272	203	270	149	35,5	199	7910	VKDNC300E	VKDNC300F
4"	100	16	195	129	385	330	238	308	167	37,6	232,8	12262	VKDNC400E	VKDNC400F

VKDOC

Válvula de bola de 2 vías DUAL BLOCK® con bridas fijas, agujeros EN/ISO/DIN PN10/16. Diámetro según norma EN 558-1

C	DN	PN	В	B ₁	С	C ₁	F	f	Н	H ₁	Sp	U	g	Código EPDM	Código FPM
75		16	164	87	327	175	145	17	290	133	21	4	6413	VKDOC075E	VKDOC075F
90	80	16	177	105	327	272	160	17	310	149	21,5	8	9669	VKDOC090E	VKDOC090F
110	100	16	195	129	385	330	180	17	350	167	21,5	8	14967	VKDOC110E	VKDOC110F

VKDOAC

Válvula de bola de 2 vías DUAL BLOCK $^{\rm B}$ con bridas fijas, agujeros ANSI B16.5 cl.150 #FF. Diámetro según norma EN 558-1

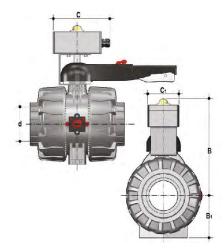
Tamaño	DN	PN	В	B ₁	С	C ₁	F	f	Н	H ₁	Sp	U	g	Código EPDM	Código FPM
2" 1/2	65	16	164	87	327	175	139,7	18	290	133	21	4	6413	VKDOC075E	VKDOC075F
3"	80	16	177	105	327	272	152,4	18	310	149	21,5	8	9669	VKDOC090E	VKDOC090F
4"	100	16	195	129	385	330	190,5	18	350	167	21,5	8	14697	VKDOC110E	VKDOC110F

ACCESORIOS

d

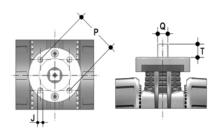
CVDE

Conectores de PE100 largos, para soldaduras con manguitos electrosoldables o a tope


d	DN	PN	L	SDR	Código
75	65	16	111	11	CVDE11075
90	80	16	118	11	CVDE11090
110	100	16	132	11	CVDE11110

LSE

Paquete de personalización e impresión de etiquetas para la maneta Easyfit compuesto por hojas adhesivas precortadas y por el software para la creación guiada de las etiquetas


d	DN	Código VKD*
75	65	LSE040
90	80	LSE040
110	100	LSE040

VKD-MS

El kit MS permite instalar en la válvula manual VKD una caja de final de carrera con microinterruptores electromecánicos o inductivos, para señalar a distancia la posición de la válvula (abierta-cerraa). El montaje del kit puede realizarse en la válvula aunque ya esté instalada.

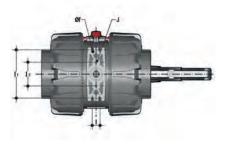
d	DN			С	C ₁	Protección	Código electromecánicos	Código inductivos	Código Namur
75	65	266	87	150	80	IP67	FKMS1M	FKMS1I	FKMS1N
90	80	279	105	150	80	IP67	FKMS1M	FKMS1I	FKMS1N
110	100	297	129	150	80	IP67	FKMS1M	FKMS1I	FKMS1N

BRIDA PARA EL MONTAJE DE ACTUADORES

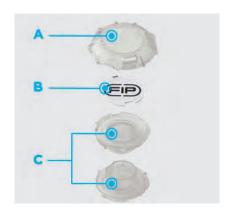
La válvula puede ser equipada con actuadores neumáticos y/o eléctricos estándar y volantes reductores para operaciones pesadas, mediante una brida de PP-GR que reproduce la plantilla de perforación prevista por la norma ISO 5211 F07

d	DN	PxJ	T	Q
75	65	F07 x 9	16	14
90	80	F07 x 9	16	14
110	100	F07 x 9	19	17

EMBRIDADO Y FIJACIÓN



Todas las válvulas, tanto manuales como motorizadas, necesitan, en muchas aplicaciones, ser fijadas adecuadamente.

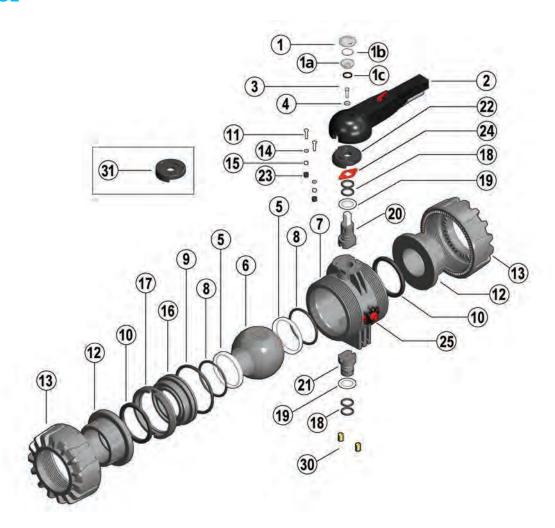

La serie de válvulas VKD está dotada con soportes integrados que permiten un anclaje directo en el cuerpo de la válvula sin necesidad de otros componentes. Para la instalación en la pared o en un panel es posible utilizar la correspondiente placa de montaje PMKD, suministrada como accesorio, que debe fijarse antes a la válvula.

La placa de montaje PMKD sirve también para alinear la válvula VKD con las abrazaderas de tubería FIP tipo ZIKM y para alinear válvulas de diferentes medidas

d	DN	J	f	1	Ļ	
75	65	M6	6,3	17,4	90	51,8
90	80	M6	8,4	21,2	112,6	63
110	100	M8	8,4	21,2	137	67

PERSONALIZACIÓN

La válvula VKD DN 65÷100 está dotada del sistema de etiquetado Labelling System.


Este sistema permite la realización por cuenta propia de etiquetas especiales para introducir en la maneta. De esta manera, se vuelve extremadamente fácil aplicar a las válvulas las marcas de las empresas, números de serie de identificación o indicaciones de servicio como, por ejemplo, la función de la válvula dentro de la instalación o el fluido transportado, pero también información específica para el servicio al cliente, como el nombre del mismo o la fecha y el lugar de instalación. El módulo específico LCE se suministra de serie y está compuesto por un tapón de PVC rígido transparente resistente al agua (A-C) y de una placa portaetiquetas blanca (B), del mismo material, que en una cara lleva la marca FIP. La placa, introducida en el interior del tapón, puede retirarse y, una vez que se la ha dado la vuelta, puede personalizarse mediante la aplicación de etiquetas impresas con el software suministrado junto con el paquete LSE.

Para aplicar la etiqueta a la válvula, proceder de esta manera:

- 1) Retirar la parte superior del tapón transparente (A) girando en el sentido contrario al de las aquias del reloj como indica el rótulo "Open" en el propio tapón y extraerla.
- 2) Extraer la placa portaetiquetas de su alojamiento en la parte inferior del tapón (C).
- 3) Aplicar la etiqueta adhesiva a la placa portaetiquetas (B) de manera que queden alineados los perfiles respetando la posición de la lengüeta.
- 4) Volver a introducir la placa portaetiquetas en su alojamiento en la parte inferior del tapón.
- 5) Volver a colocar la parte superior del tapón en su alojamiento girándola en el sentido contrario al de las agujas del reloj; de esta manera, la etiqueta estará protegida de los agentes atmosféricos.

COMPONENTES

DESPIECE

- **1-1a** Tapón de protección transparente (PVC-1)
- **1b** Placa portaetiquetas (PVC-1)
- 1c Junta tórica (NBR 1)
- 2 Maneta (HIPVC-1)
- 3 Tornillo (Acero INOX 1)
- 4 Arandela (Acero INOX 1)
- 5 Asiento de estanqueidad de la bola (PTFE 2)*
- 6 Bola (PVC-C-1)
- 7 Cuerpo (PVC-C-1)
- Junta tórica de apoyo del asiento (EPDM o FPM-2)*

- Junta tórica de estanqueidad radial (EPDM o FPM-1)*
- Junta tórica de estanqueidad del manguito (EPDM o FPM-2)*
- 11 Tornillo (Acero INOX 2)
- 12 Manguito (PVC-C-2)
- 13 Tuerca (PVC-C-2)
- 14 Arandela (Acero INOX 2)
- 15 Tuerca (Acero INOX 2)
- 16 Soporte de la junta de la bola
- 17 Anillo de roscado (PVC-C-1)
- Juntas tóricas eje de comando (EPDM o FPM 4)*

- 9 Disco antifricción (PTFE 2)*
- 20 Eje de comando superior (PVC-C/INOX 1)
- **21** Eje de comando inferior (PVC-C-1)
- 22 Platillo (PP-GR 1)
- 23 Capuchón de protección (PE 2)
- 24 Indicador de posición (PA 1)
- 25 Dual BloCk® (PP-GR ÷ varios1)
- 30 Insertos roscados (latón 2)**
 - Platillo automatización (PP-GR 1)**

Entre paréntesis se indica el material del componente y la cantidad suministrada

^{*}Repuestos

^{**}Accesorio

DESMONTAJE

- 1) Aislar la válvula de la línea (quitar la presión y vaciar la tubería).
- 2) Desbloquear las tuercas girando el botón (25) hacia la izquierda orientando la flecha hacia el candado abierto (fig. 1).
- 3) Desenroscar completamente las tuercas (13) y extraer lateralmente el cuerpo (7) (fig. 2).
- 4) Antes de desmontar la válvula, hay que drenar los posibles residuos de líquido que hayan quedado en su interior abriendo en 45° la válvula en posición vertical.
- 5) Colocar la válvula en la posición de apertura.
- 6) Quitar el tapón de protección de la maneta (2) y desenroscar los tornillos (3) con la arandela (4).
- 7) Retirar la maneta (2).
- 8) Retirar los tornillos (11) y el platillo (22) del cuerpo (7).
- 9) Introducir los dos salientes de la llave correspondiente suministrada en las respectivas aperturas del anillo roscado (17), extrayéndolo con una rotación en el sentido contrario al de las aquijas del reloj junto con el soporte de la junta (16) (fig. 3).
- 10) Presionar la bola (6) prestando atención a no rayarla y, después, extraerla del cuerpo.
- 11) Presionar el eje de comando superior (20) hacia el interior y extraerlo del cuerpo y extraer el eje de comando inferior (21). Después, quitar los discos antifricción (19).
- 12) Retirar las juntas tóricas (8, 9, 10, 18) y los asientos de estanqueidad de la bola de PTFE (5) extrayéndolos de su alojamiento, como se indica en el despiece.

MONTAJE

- 1) Todas las juntas tóricas (8, 9, 10, 18) deben introducirse en sus alojamientos, como indica el despiece.
- 2) Calzar los discos antifricción (19) en los ejes de comando (20-21) e introducir los ejes de comando en sus alojamientos desde el interior del cuerpo.
- 3) Introducir los asientos de estanqueidad de la bola de PTFE (5) en los correspondientes alojamientos del cuerpo (7) y del soporte (16).
- 4) Introducir la bola (6) y girarla en posición de cierre.
- 5) Introducir en el cuerpo la abrazadera con el anillo roscado (17) y roscar hasta el tope en el sentido de las agujas del reloj utilizando la herramienta suministrada.
- 6) Colocar el platillo (22) con cremallera en el cuerpo y enroscar los tornillos (11), arandelas (14) y tuercas (15).
- 7) La maneta (2) con el tapón de protección (1, 1a, 1b, 1c) debe colocarse en el eje de comando (20) (fig. 4).
- 8) Atornillar el tornillo (3) con la arandela (4) y colocar el tapón de protección (1, 1a, 1b, 1c).
- 9) Introducir la válvula entre los manguitos (12) y apretar las tuercas (13) prestando atención a que las juntas tóricas de estanqueidad del manguito (10) no sobresalgan de sus alojamientos.
- 10) Desbloquear las tuercas girando el botón (25) hacia la derecha orientando la flecha hacia el candado cerrado (fig. 1).

Nota: Nota: en las operaciones de montaje, se aconseja lubricar las juntas de goma. Para ello, se recuerda que no es adecuado el uso de aceites minerales, que resultan agresivos para la junta EPDM.

Fig.1

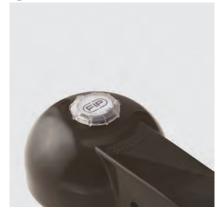

Fig.2

Fig.3

Fig.4

INSTALACIÓN

Antes de proceder a la instalación, seguir atentamente las instrucciones de montaje:

- Verificar que las tuberías a las que se debe conectar la válvula estén alineadas para evitar esfuerzos mecánicos sobre las conexiones roscadas de la misma.
- 2) Verificar que el sistema de bloqueo de las tuercas DUAL BLOCK® (25) esté en posición FREE.
- 3) Proceder con el desenroscado de las tuercas (13) y con la introducción de las mismas en los tramos de tubo
- 4) Proceder al encolado o soldadura o enroscado de los manguitos (12) en los tramos de tubo
- 5) Colocar el cuerpo de la válvula entre los manguitos y apretar completamente las tuercas (13) en el sentido de las agujas del reloj con una llave apropiada.
- 6) Bloquear las tuercas girando en el sentido de las agujas del reloj el botón (25) (ver el apartado "Bloqueo de tuercas").
- 7) Si fuera necesario, sujetar la tubería mediante abrazaderas de tubería FIP o mediante el soporte integrado en la válvula (ver el apartado "Embridado y fijación").

Efectuar la regulación de las juntas utilizando la correspondiente herramienta suministrada (fig. 3).

Una segunda regulación de las juntas se puede realizar con la válvula instalada en la tubería simplemente apretando aun más las tuercas. Tal "microrregulación", posible solo con las válvulas FIP gracias al sistema patentado "Seat stop system", permite recuperar la estanqueidad, allí donde se hubiera producido un desgaste excesivo de los asientos de estanqueidad de la bola de PTFE debido al desgaste por un elevado número de maniobras.

BLOQUEO TUERCAS

Girando el botón hacia la izquierda y orientando la flecha hacia el candado abierto, se coloca el DUAL BLOCK® en posición de desbloqueo: las tuercas de la válvula pueden rotar libremente en ambos sentidos.

Girando el botón hacia la derecha y orientando la flecha hacia el candado cerrado, se coloca el DUAL BLOCK® en posición de bloqueo: las tuercas de la válvula están bloqueadas en una posición prefijada.

BLOQUEO MANETA

Gracias a la maneta multifunción y al botón de maniobra rojo colocado en la palanca, es posible efectuar una maniobra de 0°-90° y una maniobra graduada mediante las 10 posiciones intermedias y un bloqueo de retención: la maneta puede bloquearse en cualquiera de las 10 posiciones simplemente utilizando el botón de maniobra Free-Lock. ES posible, además, instalar un candado en la maneta para evitar que la instalación sufra manipulaciones.

La válvula es bidireccional y puede instalarse en cualquier posición. Además, puede montarse al final de la línea o en un depósito.

ADVERTENCIAS A

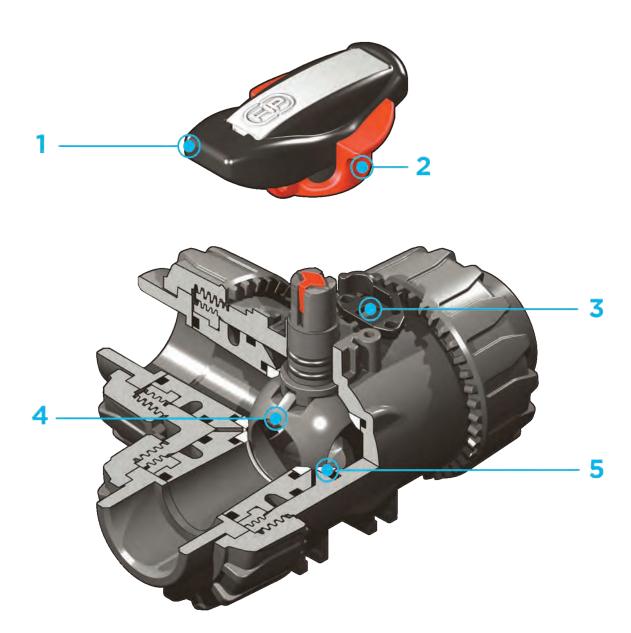
- $^{\circ}$ En caso de uso de líquidos volátiles como por ejemplo peróxido de hidrógeno ($\mathrm{H_2O_2}$) o hipoclorito sódico (NaClO), se aconseja, por razones de seguridad, ponerse en contacto con el servicio técnico. Tales líquidos, al vaporizarse, podrían crear sobrepresiones peligrosas en la zona entre cuerpo y bola.
- Evitar maniobras bruscas de cierre y proteger la válvula contra maniobras accidentales

TKD DN 10÷50

PVC-C

Válvula de bola de 3 vías DUAL BLOCK®

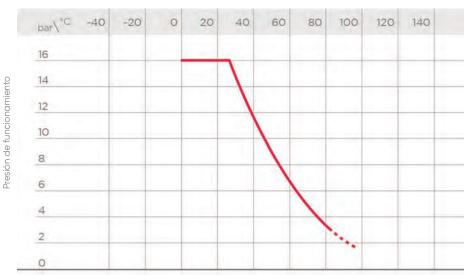
TKD **DN 10÷50**


FIP ha desarrollado una válvula de bola tipo TKD DUAL BLOCK® para introducir un elevado estándar de referencia en la concepción de las válvulas termoplásticas. TKD es una válvula de bola de clasificación y de mezcla de desmontaje radial que responde a las más severas exigencias requeridas en las aplicaciones industriales.

VÁLVULA DE BOLA DE 3 VÍAS DUAL BLOCK®

- Sistema de unión encolado y roscado.
- Sistema de sujeción de la bola patentado SEAT STOP®, que permite efectuar una microrregulación de las juntas y minimizar el efecto de los empujes axiales.
- Fácil desmontaje radial de la instalación y consiguiente rápida sustitución de las juntas tóricas y de las juntas de la bola sin emplear ninguna herramienta.
- Cuerpo de la válvula PN 16 de desmontaje radial (True union) realizado por moldeo de inyección de PVC-C dotado de agujeros integrados para la actuación. Requisitos de prueba de acuerdo con ISO 9393.
- Posibilidad de desmontaje de las tuberías aguas abajo con la válvula en posición de cierre.
- Eje de maniobra de acabado superficial de alta calidad con doble junta tórica y doble chaveta de conexión a la bola, dotado de indicador visual de posición de la bola para la correcta instalación de la maneta.
- Soporte integrado en el cuerpo para la fijación de la válvula.
- Posibilidad de instalar actuadores neumáticos y/o eléctricos gracias a la robusta torreta de anclaje para una fácil y rápida automatización mediante la ayuda del módulo Power Quick (opcional).
- Compatibilidad del material de la válvula (PVC-C) y de los elementos de estanqueidad de elastómero (EPDM o FPM), con el transporte de agua, agua potable y otras sustancias alimentarias según las normativas vigentes.

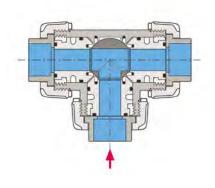
Especificaciones técnicas					
Construcción	Válvula de bola de 3 vías de desmontaje radial con soporte y tuercas bloqueadas				
Gama dimensional	DN 10 ÷ 50				
Presión nominal	PN 16 with water at 20° C				
Rango de temperatura	0 °C ÷ 100 °C				
Estándares de unión	Encolado: EN ISO 15493, ASTM F 439. Unibles con tubos según EN ISO 15493, ASTM F 441				
	Roscado: ISO 228-1, DIN 2999, ASTM F 437				
Referencias normativas	Criterios constructivos: EN ISO 16135, EN ISO 15493				
	Métodos y requisitos de las pruebas: ISO 9393				
	Criterios de instalación: DVS 2204, DVS 2221, UNI 11242				
	Acoplamientos para actuadores: ISO 5211				
Material de la válvula	PVC-C				
Material de las juntas	EPDM, FPM (junta tórica de dimensiones estándar); PTFE (asientos de estanqueidad de la bola)				
Opciones de comando	Mando manual; actuador eléctrico; actuador neumático				

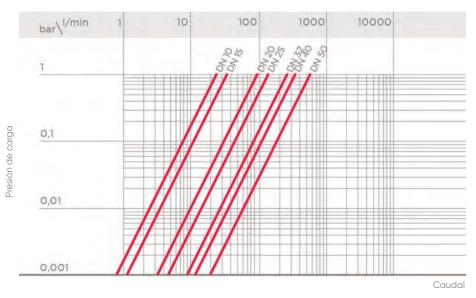

- Maneta ergonómica de HIPVC dotada de llave extraíble para la regulación del soporte de los asientos de estanqueidad de la bola. Posibilidad de instalar el **limitador de maniobra LTKD** (disponible como accesorio) que permite la rotación de la bola y de la maneta solo para ángulos de apertura o cierre prefijados de 90° o 180°.
- Bloqueo maneta 0° 90° SHKD (disponible como accesorio) ergonómicamente accionable durante la maniobra y que puede cerrarse con candado.
- Sistema de bloqueo de las tuercas patentado **DUAL BLOCK®** que asegura el aguante del apriete de las tuercas incluso en caso de condiciones duras como vibraciones o dilataciones térmicas.
- Bola esférica de paso total de tipo flotante de acabado superficial de alta calidad con paso en T o en L.
- 5 Sistema de estanqueidad de bola de 4 juntas de PTFE que permite compensar los empujes axiales garantizando una óptima maniobrabilidad y una larga duración.

DATOS TÉCNICOS

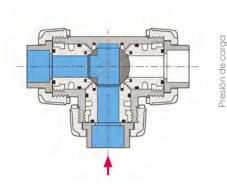
VARIACIÓN DE LA PRESIÓN EN FUNCIÓN DE LA TEMPERATURA

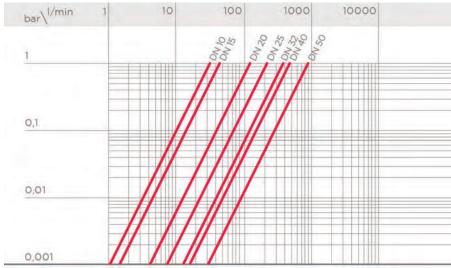
Para agua o fluidos no peligrosos para los cuales el material está clasificado como QUÍMICAMENTE RESISTENTE. En otros casos es necesaria una disminución adecuada de la presión nominal PN (25 años con factor de seguridad).

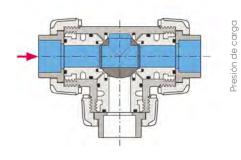

Nota: Para el empleo del PVC-C con temperaturas de funcionamiento superiores a 90°, se aconseja ponerse en contacto con el servicio técnico.

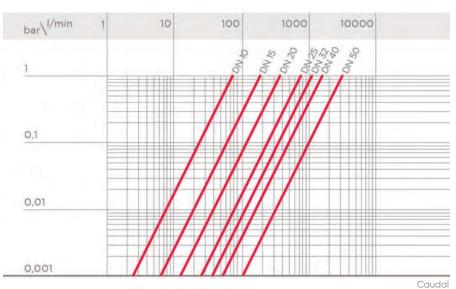


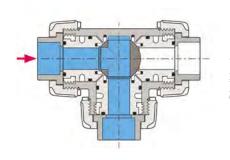
Temperatura de funcionamiento

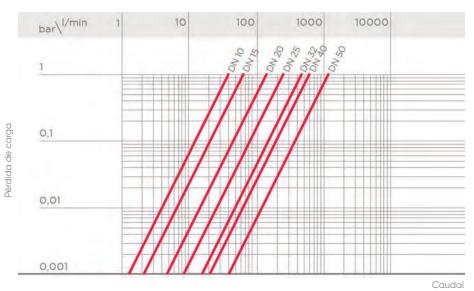

DIAGRAMA DE PÉRDIDA DE CARGA Y POSICIÓN DE TRABAJO

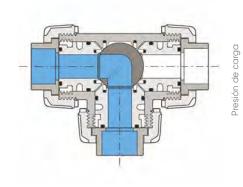

A Válvula de bola en T: 0° - Clasificación

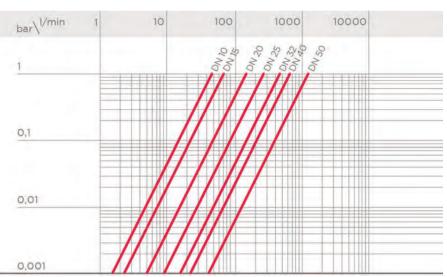

B Válvula de bola en T: 90° - Clasificación



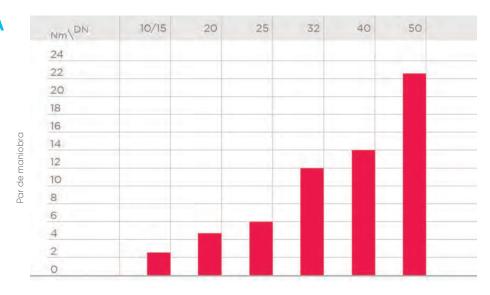

Caudal


C Válvula de bola en T: 180º Derivación cerrada/flujo directo



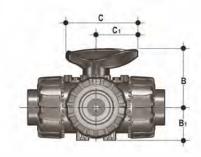

D Válvula de bola en T: 270° - Clasificación

E Válvula de bola en L: 0°/270° - Clasificación

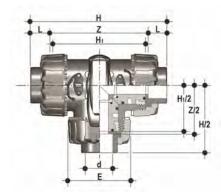

Caudal

COEFICIENTE DE FLUJO K_v100

Por coeficiente de flujo k_v 100 se entiende el caudal Q en litros por minuto de agua a 20°C que genera una pérdida de carga Δp = 1 bar para una determinada posición de la válvula. los valores k_v 100 indicados en la tabla son para la válvula completamente abierta.

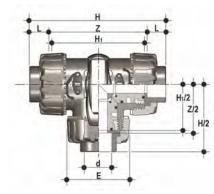

DN	10	15	20	25	32	40	50
А	25	35	95	140	270	330	620
В	37	55	135	205	390	475	900
С	78	195	380	760	1050	1700	3200
D	40	65	145	245	460	600	1200
Е	48	73	150	265	475	620	1220

PAR DE MANIOBRA A LA MÁXIMA PRESIÓN DE FUNCIONAMIENTO


Los datos de este catálogo se suministran de buena fe. FIP no asume ninguna responsabilidad por los datos no derivados directamente de normas internacionales. FIP se reserva el derecho de aportar cualquier modificación. La instalación y el mantenimiento del producto deben ser realizados por personal cualificado.

DIMENSIONES

Dimensiones comunes a todas las versiones


d	DN	В	B ₁	С	C_1
16	10	54	29	67	40
20	15	54	29	67	40
25	20	65	34,5	85	49
32	25	69,5	39	85	49
40	32	82,5	46	108	64
50	40	89	52	108	64
63	50	108	62	134	76

TKDIC

Válvula de bola de 3 vías DUAL BLOCK $^{\rm B}$ con conexiones hembra para encolar, serie métrica TKDIC bola en T / LKDIC bola en L

d	DN	PN	Е	Н	H,	L	Z	g	Código EPDM	Código FPM
16	10	16	54	118	80	14	90	310	TKDIC016E	TKDIC016F
20	15	16	54	118	80	16	86	310	TKDIC020E	TKDIC020F
25	20	16	65	145	100	19	107	550	TKDIC025E	TKDIC025F
32	25	16	73	160	110	22	116	790	TKDIC032E	TKDIC032F
40	32	16	86	188.5	131	26	136.5	1275	TKDIC040E	TKDIC040F
50	40	16	98	219	148	31	157	1660	TKDIC050E	TKDIC050F
63	50	16	122	266.5	179	38	190.5	2800	TKDIC063E	TKDIC063F

LKDIC

Válvula de bola de 3 vías DUAL BLOCK $^{\rm s}$ con conexiones hembra para encolar, serie métrica TKDIC bola en T / LKDIC bola en L

d	DN	PN	Е	Н	H ₁	L	Z	g	Código EPDM	Código FPM
16	10	16	54	118	80	14	90	310	LKDIC016E	LKDIC016F
20	15	16	54	118	80	16	86	310	LKDIC020E	LKDIC020F
25	20	16	65	145	100	19	107	550	LKDIC025E	LKDIC025F
32	25	16	73	160	110	22	116	790	LKDIC032E	LKDIC032F
40	32	16	86	188.5	131	26	136.5	1275	LKDIC040E	LKDIC040F
50	40	16	98	219	148	31	157	1660	LKDIC050E	LKDIC050F
63	50	16	122	266.5	179	38	190.5	2800	LKDIC063E	LKDIC063F

ACCESORIOS

d

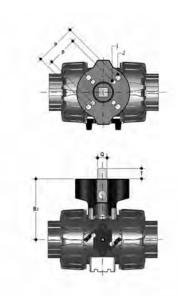
CVDE

Conectores de PE100 largos, para soldaduras con manguitos electrosoldables o a tope

d	DN	PN	L	SDR	Código
20	15	16	55	11	CVDE11020
25	20	16	70	11	CVDE11025
32	25	16	74	11	CVDE11032
40	32	16	78	11	CVDE11040
50	40	16	84	11	CVDE11050
63	50	16	91	11	CVDE11063

SHKD

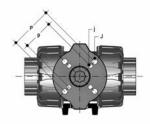
Kit bloqueo maneta 0° - 90° que puede cerrarse con candado


d	DN	Código
16 20	10 15	SHKD020
25 32	20 25	SHKD032
40 50	32 40	SHKD050
63	50	SHKD063

PSKD

Eje de prolongación

d	DN			A ₂					Código
16	10	32	25	32	54	70	29	139,5	PSKD020
20	15	32	25	32	54	70	29	139,5	PSKD020
25	20	32	25	40	65	89	34,5	164,5	PSKD025
32	25	32	25	40	73	93,5	39	169	PSKD032
40	32	40	32	50	86	110	46	200	PSKD040
50	40	40	32	50	98	116	52	206	PSKD050
63	50	40	32	59	122	122	62	225	PSKD063

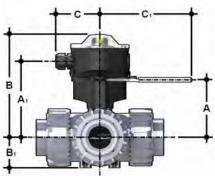


Power Quick/CP

La válvula puede equiparse con actuadores neumáticos, mediante un módulo de PP-GR que reproduce la plantilla de perforación prevista por la norma ISO 5211

d	DN	$B_{\!\scriptscriptstyle 2}$	Q	Т	рхј	PxJ	Código
16	10	58	11	12	F03 x 5,5	F04 x 5,5	PQCP020
20	15	58	11	12	F03 x 5,5	F04 x 5,5	PQCP020
25	20	69	11	12	*F03 x 5,5	F05 x 6,5	PQCP025
32	25	74	11	12	*F03 x 5,5	F05 x 6,5	PQCP032
40	32	91	14	16	F05 x 6,5	F07 x 8,5	PQCP040
50	40	97	14	16	F05 x 6,5	F07 x 8,5	PQCP050
63	50	114	14	16	F05 x 6,5	F07 x 8,5	PQCP063

*F04 x 5.5 bajo pedido



Power Quick/CE

La válvula puede equiparse con actuadores eléctricos, mediante un módulo de PP-GR que reproduce la plantilla de perforación prevista por la norma ISO 5211

d	DN	$B_{\!\scriptscriptstyle 2}$	Q		рхј		Código
16	10	58	14	16	F03 x 5,5	F04 x 5,5	PQCE020
20	15	58	14	16	F03 x 5,5	F04 x 5,5	PQCE020
25	20	69	14	16	*F03 x 5,5	F05 x 6,5	PQCE025
32	25	74	14	16	*F03 x 5,5	F05 x 6,5	PQCE032
40	32	91	14	16	F05 x 6,5	F07 x 8,5	PQCE040
50	40	97	14	16	F05 x 6,5	F07 x 8,5	PQCE050
63	50	114	14	16	F05 x 6,5	F07 x 8,5	PQCE063

*F04 x 5.5 bajo pedido

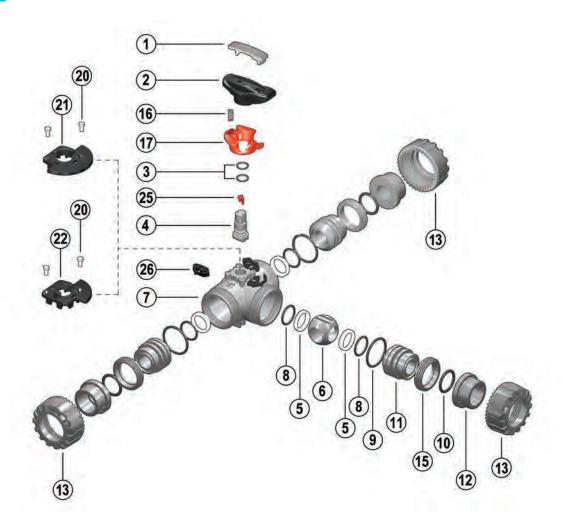
LS Quick Kit

El kit rápido de interruptor de límite permite la instalación rápida y segura del FIP LSQT en las válvulas VKD. El cuerpo en PP-GR y el mango en acero inoxidable AISI 316. El bloqueo del mango a 0° y 90° también está disponible por defecto (diámetro del orificio 6,5 mm). El kit se puede montar en la válvula incluso si ya está instalado en el sistema. Para los datos técnicos de la caja LSQT, consulte el catálogo de válvulas actuadas FIP

a	DIN			В	В ₁			Codigo
16	10	60	91,5	137	29	76,5	157,5	LSQKIT20
20	15	60	91,5	137	29	76,5	157,5	LSQKIT20
25	20	71	102,5	148	34,5	76,5	157,5	LSQKIT25
32	25	76	107,5	153	39	76,5	157,5	LSQKIT32
40	32	93	124,5	170	46	76,5	157,5	LSQKIT40
50	40	99	130,5	176	52	76,5	157,5	LSQKIT50
63	50	116	147,5	193	62	76,5	157,5	LSQKIT63

EMBRIDADO Y FIJACIÓN

Todas las válvulas, tanto manuales como motorizadas, necesitan, en muchas aplicaciones, ser fijadas adecuadamente.


La serie de válvulas TKD está dotada de soportes integrados que permiten un anclaje directo en el cuerpo de la válvula sin necesidad de otros componentes. Utilizando tuercas roscadas estándar (no incluidas) de acero inoxidable, es posible anclar la válvula en 4 puntos de fijación.

d	DN	g	Н	L	J
16	10	31,5	27	20	M5 x 8
20	15	31,5	27	20	M5 x 8
25	20	40	30	20	M5 x 8
32	25	40	30	20	M5 x 8
40	32	50	35	30	M6 x 10
50	40	50	35	30	M6 x 10
63	50	60	40	30	M6 x 10

COMPONENTES

DESPIECE

- 1 Inserto maneta (PVC-U 1)
- 2 Maneta (HIPVC-1)
- Junta tórica eje comando (EPDM o FPM-2)*
- 4 Eje de comando (PVC-C-1)
- 5 Asiento de estanqueidad de la bola (PTFE 4)*
- 6 Bola (PVC-C-1)
- 7 Cuerpo (PVC-C-1)

- Junta tórica del asiento de estanqueidad de la bola (EPDM o FPM 4)*
- 9 Junta tórica de estanqueidad radial (EPDM o FPM 3)
- Junta tórica de estanqueidad del manguito (EPDM o FPM 3)*
- 11 Soporte de la junta de la bola (PVC-C 3)
- 12 Manguito (PVC-C 3)*
- 13 Tuerca (PVC-C 3)

- 5 Anillo de roscado (PVC-C 3)
- 16 Muelle accesorio SHKD (Acero INOX 1)**
- 17 Kit de seguridad para maneta accesorio SHKD (PP-GR 1)**
- 20 Remache para LTKD (POM 2)**
- 21 LTKD 180° (POM 1)**
- 22 LTKD 90° (POM 1)**
- 25 Indicador de posición (POM 1)
- 26 DUAL BLOCK® (POM 3)

Entre paréntesis se indica el material del componente y la cantidad suministrada

^{*}Repuestos

^{**}Accesorio

DESMONTAJE

- 1) Aislar la válvula de la línea (quitar la presión y vaciar la tubería).
- 2) Desbloquear las tuercas presionando la palanca del DUAL BLOCK® (26) en dirección axial alejándola de la tuerca (fig. 1). Es posible, de todas formas, retirar completamente del cuerpo de la válvula el dispositivo de bloqueo.
- 3) Desenroscar completamente las tuercas (13) y extraer el cuerpo (7).
- 4) Después de haber llevado la maneta (2) a la posición con las tres flechas dirigidas hacia las tres bocas (para la bola en L con las dos flechas dirigidas hacia la boca a y b), extraer de la maneta (2) el inserto correspondiente (1) e introducir los dos salientes en las correspondientes aperturas de los anillos roscados (15), extrayendo así las abrazaderas (11) mediante una rotación en el sentido contrario al de las agujas del reloj.
- 5) Extraer la bola (6) de la boca central prestando atención a no dañar la superficie de estanqueidad.
- 6) Retirar de los soportes (11) los asientos de estanqueidad de la bola de PTFE (5) y las juntas tóricas (8, 9, 10).
- 7) Tirar de la maneta (2) hacia arriba para extraerla del eje de comando (4).
- 8) Presionar el eje de comando (4) hacia el interior del cuerpo hasta extraerla.
- 9) Sacar el asiento de estanqueidad de la bola de PTFE (5) con la correspondiente junta tórica (8) del interior del cuerpo de la válvula.
- 10) Sacar las juntas (3) del eje de comando (4) de sus alojamientos.

MONTAJE

- 1) Introducir las juntas (3) en el eje de comando (4).
- 2) Ilntroducir en el alojamiento presente en el interior del cuerpo válvula la junta tórica (8) y, a continuación, los asientos de estanqueidad de la bola de PTFE (5).
- 3) Introducir el eje de comando (4), desde el interior, en el cuerpo, prestando atención a que las tres muescas situadas en la cabeza correspondan a las tres salidas.
- 4) Introducir la bola (6) por la boca central b prestando atención a que los tres orificios correspondan con las tres salidas (para la bola en L los dos orificios deberán corresponder a las bocas a y b).
- 5) Introducir las juntas tóricas (8), los asientos de estanqueidad de la bola de PTFE (5), las juntas tóricas de estanqueidad del manguito (10) y las juntas tóricas de estanqueidad radial (9), en sus alojamientos de los soportes (11).
- 6) Introducir los tres soportes(11) con los correspondientes anillos de retención (15) enroscándolos en el sentido de las agujas del reloj con el inserto correspondiente (1), empezando por el de la boca central b.
- 7) Presionar la maneta (2) contra el eje de comando (4) prestando atención a que las flechas impresas sobre ella estén alineadas con las líneas del eje de comando (fig. 2–3).
- 8) Volver a colocar el inserto (1) en la maneta (2).
- 9) Introducir la válvula entre los manguitos (12) y apretar las tuercas (13) prestando atención a que las juntas tóricas de estanqueidad del manguito (10) no sobresalgan de sus alojamientos.

Nota: en las operaciones de montaje, se aconseja lubricar las juntas de goma. Para ello, se recuerda que no es adecuado el uso de aceites minerales, que resultan agresivos para la junta EPDM.

Fia. 2

Fig. 3

Fig. 4

INSTALACIÓN

Antes de proceder a la instalación, seguir atentamente las instrucciones de montaje:

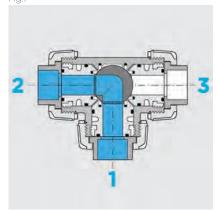
- Verificar que las tuberías a las que se debe conectar la válvula estén alineadas para evitar esfuerzos mecánicos sobre las conexiones roscadas de la misma.
- 2) Verificar que en el cuerpo de la válvula esté instalado el sistema de bloqueo de las tuercas DUAL BLOCK® (26).
- 3) Desbloquear las tuercas (13) presionando axialmente sobre la palanca de desbloqueo correspondiente para alejar el bloqueo de la tuerca y desenroscar después la misma en el sentido contrario a las agujas del reloj.
- 4) Proceder con el desenroscado de las tres tuercas (13) y con la introducción de las mismas en los tramos de tubo.
- 5) Proceder al encolado o soldado o enroscado de los manguitos (12) en los tramos de tubo.
- 6) Colocar el cuerpo de la válvula entre los manguitos y apretar completamente las tuercas (13) a mano en el sentido de las agujas del reloj, sin utilizar llaves u otras herramientas que pudieran dañar la superficie de las tuercas.
- 7) Bloquear las tuercas volviendo a colocar el DUAL BLOCK® en su alojamiento correspondiente, presionándolo para que los dos fijadores enganchen las tuercas.
- 8) Si fuera necesario, sujetar la tubería mediante abrazaderas de tubería FIP o mediante el soporte integrado en la válvula (ver el apartado "Embridado y fijación").

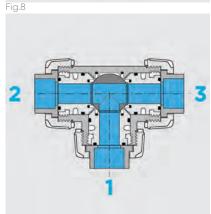
La válvula TKD puede dotarse de un bloqueo maneta para inhibir la rotación de la bola (disponible como accesorio). Cuando está instalado (16, 17) el bloqueo, hay que elevar la palanca (17) y efectuar la rotación de la maneta.

Además, es posible instalar un candado en la maneta para evitar que la instalación sufra manipulaciones (fig. 4).

La regulación de las juntas puede efectuarse utilizando el inserto extraíble que se encuentra en la maneta (fig. 5-6). Después de haber posicionado la bola como se indica en la figura 7-8, usando tal inserto como herramienta, es posible realizar la regulación de las juntas enroscando las abrazaderas según la secuencia indicada (fig. 7-8).

Una segunda regulación de las juntas se puede realizar con la válvula instalada en la tubería simplemente apretando aun más las tuercas.


Tal "microrregulación", posible solo con las válvulas FIP gracias al sistema patentado "Seat stop system", permite recuperar la estanqueidad, allí donde se hubiera producido un desgaste excesivo de los asientos de estanqueidad de la bola de PTFE debido al desgaste por un elevado número de maniobras.


ADVERTENCIAS 🔔

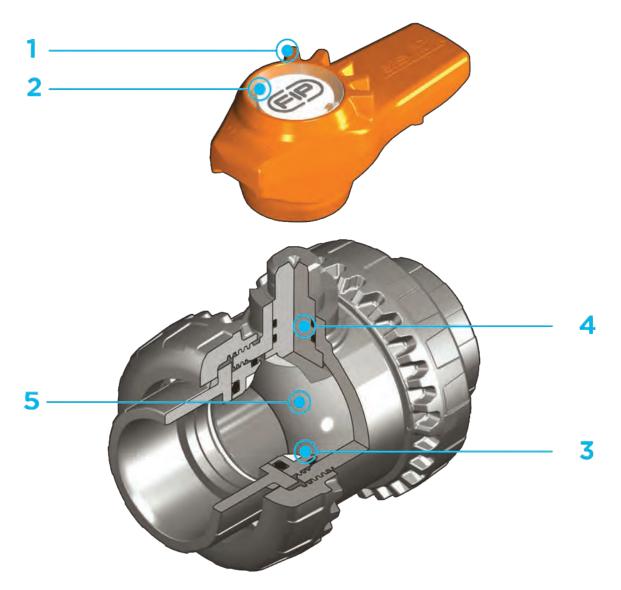
Evitar maniobras bruscas de cierre y proteger la válvula contra maniobras accidentales.

VXE DN 10÷50

PVC-C

Válvula de bola de 2 vías Easyfit

VXE **DN 10÷50**


FIP y Giugiaro Design han diseñado y desarrollado VXE Easyfit, la innovadora válvula de bola de desmontaje radial con regulación del apriete de las tuercas, que permite una instalación simple y segura para un servicio fiable a lo largo del tiempo. Además, esta válvula está dotada del sistema de personalización Labelling System.

VÁLVULA DE BOLA DE 2 VÍAS EASYFIT

- Sistema patentado Easyfit: innovador mecanismo basado en la cinemática de las ruedas dentadas cónicas que controla la rotación de las tuercas de la válvula durante la instalación.
- · Sistema de unión encolado y roscado.
- Compatibilidad del material de la válvula (PVC-C) y de los elementos de estanqueidad de elastómero (EPDM o FPM), con el transporte de agua, agua potable y otras sustancias alimentarias según las normativas vigentes.
- Fácil desmontaje radial de la instalación y consiguiente sustitución rápida de las juntas tóricas y de los asientos de la bola sin usar ninguna herramienta.
- Cuerpo de la válvula PN16 de desmontaje radial (True Union) realizado mediante moldeo por inyección de PVC-C y conforme con la Directiva Europea 97/23/CE para equipos a presión PED. Requisitos de prueba de acuerdo con ISO 9393.
- Diámetro de reducidas dimensiones según las normativas internacionales ISO 7508 serie III "short" y completa intercambiabilidad con los precedentes modelos de la serie VX Ergo.
- Posibilidad de desmontaje de las tuberías aguas abajo con la válvula en posición de cierre.
- Bola de paso total de tipo flotante de acabado superficial de alta calidad realizado en centros de trabajo CNC para obtener tolerancias dimensionales precisas y acabados superficiales de alta calidad.

Especificaciones técnicas					
Construcción	Válvula de bola de 2 vías Easyfit de desmontaje radial con soporte bloqueado				
Gama dimensional	DN 10 ÷ 50				
Presión nominal	PN 16 con agua a 20° C				
Rango de temperatura	0 °C ÷ 100 °C				
Estándares de unión	Encolado: EN ISO 15493, ASTM F 439. Unibles con tubos según EN ISO 15493, ASTM F 441				
	Roscado: ISO 228-1, DIN 2999, ASTM F 437.				
Referencias normativas	Criterios constructivos: EN ISO 16135, EN ISO 15493				
	todos y requisitos de las pruebas: ISO 9393				
	Criterios de instalación: DVS 2204, DVS 2221, UNI 11242				
	Actuator couplings: ISO 5211				
Material de la válvula	PVC-C				
Material de las juntas	EPDM, FPM (junta tórica de dimensiones estándar); PTFE (asientos de estanqueidad de la bola)				
Opciones de comando	Mando manual				

- Maneta multifuncional ergonómica Easyfit que puede colocarse en dos posiciones con mando para la regulación del apriete de las tuercas y que puede utilizarse como llave para la regulación del soporte de los asientos de estanqueidad de la bola. El uso de la maneta está especialmente indicado para operaciones de mantenimiento donde se trabaje en espacios reducidos y de difícil acceso.
- 2 Sistema de personalización Labelling System: Módulo LCE integrado en la maneta compuesto por tapón de protección transparente y por una placa portaetiquetas personalizable mediante el

- paquete LSE (disponible como accesorio). La posibilidad de personalización permite **identificar la válvula en la instalación** en función de exigencias específicas.
- Sistema de estanqueidad de PTFE con soporte bloqueado regulable mediante la maneta multifuncional Easyfit o mediante el kit de regulación Easytorque (disponible como accesorio).
- 4 Eje de maniobra de acabado superficial de alta calidad con doble junta tórica, realizado en centros de trabajo CNC para obtener tolerancias dimensionales precisas y acabados superficiales de alta calidad.

- 5 Sistema di tenuta della sfera a 4 guarnizioni in PTFE che consente di compensare le spinte assiali garantendo ottima manovrabilità e lunga durata.
 - ¿Sistema de sellado de bolas con 4 juntas de PTFE que permite compensar los empujes axiales asegurando una excelente maniobrabilidad y larga duración?

DATOS TÉCNICOS

VARIACIÓN DE LA PRESIÓN EN FUNCIÓN DE LA TEMPERATURA

Para agua o fluidos no peligrosos para los cuales el material está clasificado como QUÍMICAMENTE RESISTENTE. En otros casos es necesaria una disminución adecuada de la presión nominal PN (25 años con factor de seguridad).

Nota: Para el empleo del PVC-C con temperaturas de funcionamiento superiores a 90°, se aconseja ponerse en contacto con el servicio técnico.

Temperatura de funcionamiento

DIAGRAMA DE PÉRDIDA DE CARGA

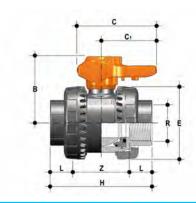
COEFICIENTE DE FLUJO K,,100

Por coeficiente de flujo k_v 100 se entiende el caudal Q en litros por minuto de agua a 20 °C, que genera una pérdida de carga Δp = 1 bar para una determinada posición de la válvula.

Los valores k_v100 indicados en la tabla son para la válvula completamente abierta.

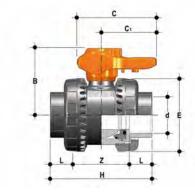
DN	10	15	10	25	32	40	50
K _v 100 I/min	80	200	385	770	1110	1750	3400

Los datos de este catálogo se suministran de buena fe. FIP no asume ninguna responsabilidad por los datos no derivados directamente de normas internacionales. FIP se reserva el derecho de aportar cualquier modificación. La instalación y el mantenimiento del producto deben ser realizados por personal cualificado.


DIMENSIONES

VXEIC

Válvula de bola de 2 vías Easyfit, con conexiones hembra para encolar, serie métrica


d	DN	PN	В	С	C ₁	Е	Н	L	Z	g	Código EPDM	Código FPM
16	10	16	49	64	44	54	82	16	50	180	VXEIC016E	VXEIC016F
20	15	16	49	64	44	54	82	16	50	175	VXEIC020E	VXEIC020F
25	20	16	62	78	55	63	91	19	53	260	VXEIC025E	VXEIC025F
32	25	16	71	87	60	72	103	22	59	365	VXEIC032E	VXEIC032F
40	32	16	82	102	72	85	120	26	68	565	VXEIC040E	VXEIC040F
50	40	16	92	109	76	100	139	31	77	795	VXEIC050E	VXEIC050F
63	50	16	110	133	94	118	174	38	98	1325	VXEIC063E	VXEIC063F

VXEFC

Válvula de bola de 2 vías Easyfit, con conexiones hembra, rosca cilíndrica gas

R	DN	PN		С	C ₁		Н			g	Código EPDM	Código FPM
1/2"	15	16	49	64	44	54	90	17,8	54,4	175	VXEFC012E	VXEFC012F
3/4"	20	16	62	64	55	63	93	18	57	260	VXEFC034E	VXEFC034F
1"	25	16	71	78	60	72	110	22,6	64,8	365	VXEFC100E	VXEFC100F
1" 1/4	32	16	82	87	72	85	127	25,1	76,8	565	VXEFC114E	VXEFC114F
1" 1/2	40	16	92	102	76	100	131	24,7	81,6	795	VXEFC112E	VXEFC112F
2"	50	16	110	109	94	118	161	29,6	101,8	1325	VXEFC200E	VXEFC200F

VXEAC

Válvula de bola de 2 vías Easyfit con conexiones hembra para encolar, serie ASTM

d	DN	PN	В	С	C ₁	Е	Н	L	Z	g	Código EPDM	Código FPM
1/2"	15	16	49	64	44	54	96	22,5	51	175	VXEAC012E	VXEAC012F
3/4"	20	16	62	78	55	63	105	25,5	54	260	VXEAC034E	VXEAC034F
1"	25	16	71	87	60	72	117	28,7	59,5	365	VXEAC100E	VXEAC100F
1" 1/4	32	16	82	102	72	85	136	32	72	565	VXEAC114E	VXEAC114F
1" 1/2	40	16	92	109	76	100	147	35	77	795	VXEAC112E	VXEAC112F
2"	50	16	110	133	94	118	174	38,2	97,6	1325	VXEAC200E	VXEAC200F

VXENC

Válvula de bola de 2 vías Easyfit con conexiones hembra, rosca NPT

R	DN	PN	В	С	C ₁	Е	Н	L	Z	g	Código EPDM	Código FPM
1/2"	15	16	49	64	44	54	90	17,8	54,4	175	VXENC012E	VXENC012F
3/4"	20	16	62	78	55	63	93	18	57	260	VXENC034E	VXENC034F
1"	25	16	71	87	60	72	110	22,6	64,8	365	VXENC100E	VXENC100F
1" 1/4	32	16	82	102	72	85	127	25,1	76,8	565	VXENC114E	VXENC114F
1" 1/2	40	16	92	109	76	100	131	24,7	81,6	795	VXENC112E	VXENC112F
2"	50	16	110	133	94	118	161	29,6	101,8	1325	VXENC200E	VXENC200F

ACCESORIOS

d

CVDE

Conectores de PE100 largos, para soldaduras con manguitos electrosoldables o a tope

d	DN	PN		SDR	Código
20	15	16	55	11	CVDE11020
25	20	16	70	11	CVDE11025
32	25	16	74	11	CVDE11032
40	32	16	78	11	CVDE11040
50	40	16	84	11	CVDE11050
63	50	16	91	11	CVDE11063

LCE

Tapón de protección transparente con placa portaetiquetas

d	DN	Código VEE
16	10	LCE020
20	15	LCE020
25	20	LCE025
32	25	LCE032
40	32	LCE040
50	40	LCE050
63	50	LCE063

LSE

Paquete de personalización e impresión de etiquetas para la maneta Easyfit compuesto por hojas adhesivas precortadas y por el software para la creación guiada de las etiquetas

d	DN	Código VEE-VXE
16	10	LSE020
20	15	LSE020
25	20	LSE025
32	25	LSE032
40	32	LSE040
50	40	LSE050
63	50	LSE063

PERSONALIZACIÓN

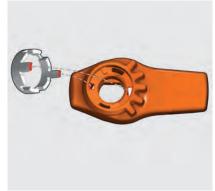
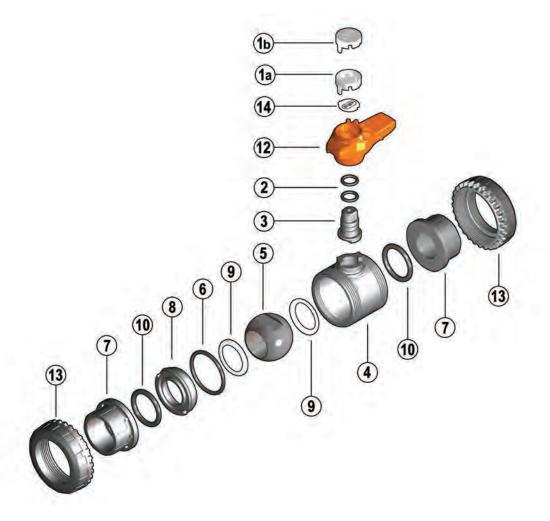

Fig. 1

Fig. 2

Fig. 3

La válvula VXE DN 10÷50 Easyfit está dotada del sistema de etiquetado Labelling System.


Este sistema permite la realización por cuenta propia de etiquetas especiales para introducir en la maneta. De esta manera, se vuelve extremadamente fácil aplicar a las válvulas las marcas de las empresas, números de serie de identificación o indicaciones de servicio como, por ejemplo, la función de la válvula dentro de la instalación o el fluido transportado, pero también información específica para el servicio al cliente, como el nombre del mismo o la fecha y el lugar de instalación. El módulo específico LCE suministrado de serie se compone de un tapón de PVC rígido transparente (A) resistente al agua y de una placa portaetiquetas blanca (B), del mismo material, que en una cara lleva la marca FIP (fig. 1). La placa, introducida en el interior del tapón, puede retirarse y, una vez que se le ha dado la vuelta, puede personalizarse mediante la aplicación de etiquetas impresas con el software suministrado junto con el paquete LSE.

Para aplicar la etiqueta a la válvula, proceder de esta manera:

- 1) Extraer la maneta del cuerpo de la válvula y el tapón transparente de la misma.
- 2) Extraer la placa portaetiquetas del tapón transparente (fig. 2).
- 3) Aplicar la etiqueta adhesiva a la placa portaetiquetas de manera que los perfiles queden alineados respetando la posición de la lengüeta.
- 4) Volver a introducir la placa portaetiquetas en el tapón transparente de forma que la etiqueta quede protegida de los agentes atmosféricos.
- 5) Aplicar el tapón transparente a la maneta haciendo coincidir los dos encastres (uno estrecho y uno ancho) con los respectivos alojamientos (fig. 3).

COMPONENTES

DESPIECE

- 1a Tapón de protección transparente (PVC-1)
- 2 Junta tórica eje de comando (EPDM o FPM-2)*
- **3** Eje de comando (PVC-C-1)
- 4 Cuerpo (PVC-C-1)
- 5 Bola (PVC-C-1)

- Junta tórica de estanqueidad radial (EPDM o FPM-1)*
- 7 Manguito (PVC-C-2)
- 8 Soporte de la junta de la bola (PVC-C-1)
- 9 Asiento de estanqueidad de la bola (PTFE-2)*
- Junta tórica de estanqueidad del manguito (EPDM o FPM-2)*
- 12 Maneta (HIPVC-1)
- 13 Tuerca (PVC-C-2)
- 14 Placa portaetiquetas (PVC-1)

Entre paréntesis se indica el material del componente y la cantidad suministrada

^{*}Repuestos

DESMONTAJE

- 1) Aislar la válvula de la línea (quitar la presión y vaciar la tubería).
- 2) Desenroscar completamente las tuercas (13) del cuerpo de la válvula y extraer lateralmente el cuerpo (fig. 4-5). Para realizar esta operación, es aconsejable aprovechar el mecanismo Easyfit empleando la maneta como herramienta (fig. 8-9).
- 3) Antes de desmontar la válvula, hay que drenar los posibles residuos de líquido que hayan quedado en su interior abriendo en 45º la válvula en posición vertical.
- 4) Después de haber llevado la válvula a la posición de cierre, retirar la maneta (12) (fig. 6) e introducir los dos salientes presentes en el lado inferior respectivamente en uno de los dos encastres y en el orificio de paso del soporte (8), extrayéndolo con una rotación en el sentido contrario al de las agujas del reloj (fig. 7).
- 5) Presionar sobre la bola desde el lado opuesto al rótulo "REGULAR", prestando atención a no rayarla, hasta obtener la salida del soporte del asiento de estanqueidad de la abrazadera (9), después, extraer la bola (5).
- 6) Presionar el eje de comando (3) hacia el interior y extraerlo del cuerpo.
- 7) Retirar las juntas tóricas (2, 6, 10) y los asientos de estanqueidad de la bola (9) extrayéndolas de sus alojamientos, como indica el despiece.

MONTAJE

- Todas las juntas tóricas (2, 6, 10) deben introducirse en sus alojamientos, como indica el despiece.
- 2) Introducir el eje de comando (3) desde el interior del cuerpo (4).
- 3) Introducir los asientos de estanqueidad de la bola (9) en los correspondientes alojamientos del cuerpo (4) y del soporte (8).
- 4) Introducir la bola (5) y girarla en posición de cierre.
- 5) Introducir la abrazadera (8) en el cuerpo y enroscar hasta el tope en el sentido de las agujas del reloj utilizando la maneta (12).
- 6) Colocar la válvula entre los manguitos (7) y apretar las tuercas (13) en el sentido de las agujas del reloj utilizando la maneta multifuncional Easyfit, prestando atención a que las juntas tóricas de estanqueidad del manguito (10) no sobresalgan de sus alojamientos.
- 7) Colocar la maneta (12) en el eje de comando (3).

Nota: en las operaciones de montaje, se aconseja lubricar las juntas de goma. Para ello, se recuerda que no es adecuado el uso de aceites minerales, que resultan agresivos para la junta EPDM.

Fig. 5

ia 6

Fig. 7

INSTALACIÓN

Antes de proceder a la instalación, seguir atentamente las instrucciones de montaie:

- 1) Verificar que las tuberías a las que se debe conectar la válvula estén alineadas para evitar esfuerzos mecánicos sobre las conexiones roscadas de la misma.
- 2) Desenroscar las tuercas del cuerpo de la válvula (4) e introducirlas en los tramos de tubo
- 3) Proceder al encolado o enroscado de los manguitos (7) en los tramos de tubo.
- 4) Posicionar el cuerpo de la válvula entre los manguitos (fig. 5).
- 5) Atención: si estuviera prevista una prueba a alta presión, colocar siempre el cuerpo con el rótulo "REGULAR" aguas arriba respecto a la dirección del fluido.
- 6) 5) Embocar las tuercas en el cuerpo válvula y apretarlas manualmente en el sentido de las agujas del reloj hasta percibir una resistencia a la rotación; no utilizar llaves u otras herramientas que pudieran dañar la superficie de las tuercas.
- 6) Extraer la maneta (12) del cuerpo de la válvula y el tapón transparente (1a) de la misma.
- 8) 7) Dar la vuelta a la maneta e introducirla en el eje de comando de la válvula para que el dentado (A) de la maneta coincida con el dentado (B) de la tuerca (fig. 8-9).
- 9) 8) Girar en el sentido contrario al de las agujas del reloj para apretar completamente la tuerca. En la maneta está indicado el sentido de rotación para apretar (TIGHTEN) y para aflojar (UNTIGHTEN) las tuercas (fig. 10). Generalmente, si no hay desalineaciones de las tuberías, una sola rotación es suficiente para el apriete correcto.
- 10) 9) Repetir el punto 7 para la otra tuerca.
- 11) Nota: Un pequeño esfuerzo aplicado a la maneta desarrolla un par muy superior al de un apriete manual.
- 12) También es posible, mediante el Kit Easytorque (fig. 11), suministrado como accesorio, efectuar el apriete de las tuercas utilizando una llave dinamométrica para cuantificar los esfuerzos y, por tanto, monitorizar el estrés aplicado a las roscas termoplásticas de acuerdo con las indicaciones de instalación presentes en las instrucciones adjuntas junto con el propio kit.
- 13) 10) Aplicar el tapón (1a) a la maneta (12) haciendo coincidir los dos encastres (uno estrecho y otro ancho) con los correspondientes alojamientos de la maneta (fig. 3).
- 14) 11) Instalar de nuevo la maneta (12) en el eje de comando (3).
- 12) Si fuera necesario, sujetar las tuberías mediante abrazaderas de tubería FIP modelo ZIKM con distanciadores DSM.

- $^{\circ}$ En caso de uso de líquidos volátiles como por ejemplo peróxido de hidrógeno ($\mathrm{H_2O_2}$) o hipoclorito sódico (NaClO), se aconseja, por razones de seguridad, ponerse en contacto con el servicio técnico. Tales líquidos, al vaporizarse, podrían crear sobrepresiones peligrosas en la zona entre cuerpo y bola.
- \bullet No utilizar aire comprimido u otros gases para la prueba de las líneas termoplásticas.
- Evitar siempre maniobras de cierre bruscas y proteger la válvula de maniobras accidentales.

Fig. 9

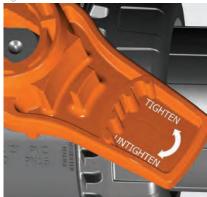


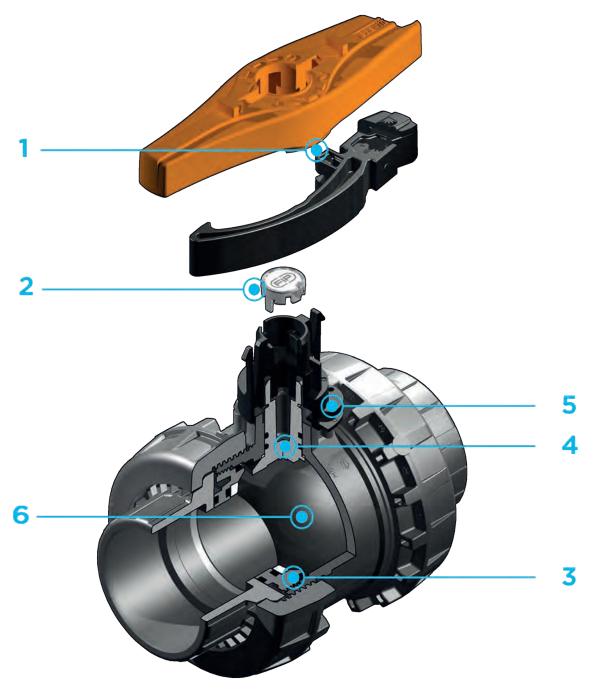
Fig. 11

VXE DN 65÷100

PVC-C

Válvula de bola de 2 vías Easyfit

VXE **DN 65÷100**


FIP y Giugiaro Design han diseñado y desarrollado VXE Easyfit, la innovadora válvula de bola de desmontaje radial con regulación del apriete de las tuercas que permite una instalación simple y segura para un servicio fiable a lo largo del tiempo. Además, esta válvula está dotada del sistema de personalización Labelling System.

VÁLVULA DE BOLA DE 2 VÍAS EASYFIT

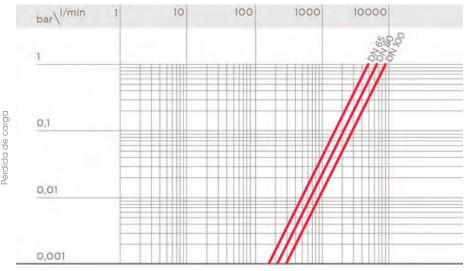
- Sistema patentado Easyfit: innovador mecanismo basado en el desenganche rápido de la maneta multifunción que permite efectuar la operación de rotación de las tuercas durante la instalación de la válvula y la regulación del soporte de la bola.
- Sistema de unión encolado y roscado.
- Compatibilidad del material de la válvula (PVC-C) y de los elementos de estanqueidad de elastómero (EPDM o FPM), con el transporte de agua, agua potable y otras sustancias alimentarias según las normativas vigentes.
- Fácil desmontaje radial de la instalación y consiguiente sustitución rápida de las juntas tóricas y de los asientos de estanqueidad de la bola sin usar ninguna herramienta.
- Cuerpo de la válvula PN16 de desmontaje radial (True Union) realizado mediante moldeo por inyección de PVC-C y conforme con la Directiva Europea 97/23/CE para equipos a presión PED. Requisitos de prueba de acuerdo con ISO 9393.
- Cuerpo de la válvula con estructura integrada de anclaje para el kit especial de actuación Power Quick dedicado a la instalación de accesorios o actuadores neumáticos y eléctricos.
- Posibilidad de desmontaje de las tuberías aguas abajo con la válvula en posición de cierre.
- **Bola de paso total** de tipo flotante de acabado superficial de alta calidad realizado en centros de trabajo CNC para obtener tolerancias dimensionales precisas y acabados superficiales de alta calidad.

Especificaciones técnicas					
Construcción	Válvula de bola de 2 vías Easyfit de desmontaje radial con soporte bloqueado				
Gama dimensional	DN 65 ÷ 100				
Presión nominal	PN 16 con agua a 20° C				
Rango de temperatura	0 °C ÷ 60 °C				
Estándares de unión	Encolado: EN ISO 15493, ASTM F 439. Unibles con tubos según EN ISO 15493, ASTM F 441				
	Roscado: ISO 228-1, DIN 2999, ASTM F 437				
	Embridado				
Referencias normativas	Criterios constructivos: EN ISO 16135, EN ISO 15493				
	Métodos y requisitos de las pruebas: ISO 9393				
	Criterios de instalación: DVS 2204, DVS 2221, UNI 11242				
	Acoplamientos para actuadores: ISO 5211				
Material de la válvula	PVC-C				
Opciones de comando	Mando manual, actuador eléctrico, actuador neumático				

- Innovadora maneta de desenganche rápido Easyfit compuesta por un cubo central firmemente acoplado al eje de maniobra y por una empuñadura de dos radios que puede desengancharse del cubo con una simple operación y utilizarse como llave para la regulación de los asientos de la bola y como herramienta para el apriete de las tuercas gracias al inserto que, adaptándose perfectamente a su perfil exterior, permite que la maneta se transforme en una llave para el control de la rotación de las propias tuercas.
- 2 Sistema de personalización
 Labelling System: módulo LCE
 integrado en el cubo compuesto
 por tapón de protección
 transparente y por una placa
 portaetiquetas personalizable
 mediante el paquete LSE
 (disponible como accesorio). La
 posibilidad de personalización
 permite identificar la válvula
 en la instalación en función de
 exigencias específicas.
- Sistema de estanqueidad de PTFE con soporte bloqueado regulable mediante la maneta de desenganche rápido Easyfit
- 4 Eje de maniobra de acabado superficial de alta calidad con doble junta tórica y disco antifricción de PTFE que limita al mínimo el rozamiento y confiere un excelente par de maniobra.
- 5 Bloqueo de la maniobra tanto en cierre como en apertura mediante la introducción de un candado.
- Bola mecanizada con un alto acabado superficial que garantiza una excelente maniobrabilidad y una mayor fiabilidad.

DATOS TÉCNICOS

VARIACIÓN DE LA PRESIÓN EN FUNCIÓN DE LA TEMPERATURA

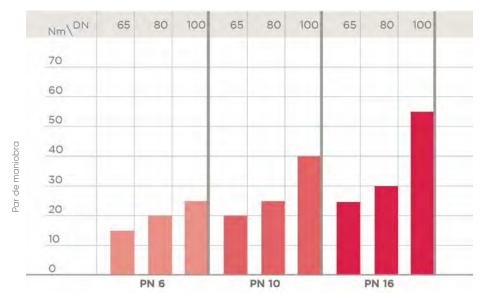

Para agua o fluidos no peligrosos para los cuales el material está clasificado como QUÍMICAMENTE RESISTENTE. En otros casos es necesaria una disminución adecuada de la presión nominal PN (25 años con factor de seguridad).

Nota: Para el empleo del PVC-C con temperaturas de funcionamiento superiores a 90°, se aconseja ponerse en contacto con el servicio técnico.

Temperatura de funcionamiento

DIAGRAMA DE PÉRDIDA DE CARGA

Caudal


COEFICIENTE	DE
FLUJO K _v 100	

Por coeficiente de flujo k_v 100 se entiende el caudal Q en litros por minuto de agua a 20 °C que genera una pérdida de carga Δp = 1 bar para una determinada posición de la válvula.

Los valores k_,100 indicados en la tabla son para la válvula completamente abierta.

DN	65	80	100
K _v 100 I/min	5000	7000	9400

PAR DE MANIOBRA A LA MÁXIMA PRESIÓN DE FUNCIONAMIENTO

Los datos de este catálogo se suministran de buena fe. FIP no asume ninguna responsabilidad por los datos no derivados directamente de normas internacionales. FIP se reserva el derecho de aportar cualquier modificación. La instalación y el mantenimiento del producto deben ser realizados por personal cualificado.

DIMENSIONES

VXEIC

Válvula de bola de 2 vías Easyfit con conexiones hembra para encolar, serie métrica

d	DN	PN		С	C ₁		Н			g	Código EPDM	Código FPM
75	65	16	142	214	115	157	211	44	123	2998	VXEIC075E	VXEIC075F
90	80	16	151	239	126	174	248	51	146	3741	VXEIC090E	VXEIC090F
110	100	16	174,5	270	145	212	283	61	161	6337	VXEIC110E	VXEIC110F

VXEFC

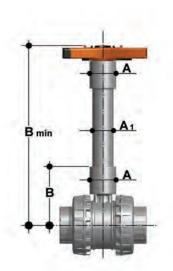
Válvula de bola de 2 vías Easyfit con conexiones hembra, rosca cilíndrica gas

R	DN	PN		С	C ₁		Н			g	Código EPDM	Código FPM
2"1/2	65	16	142	214	115	157	211	30,2	150,6	2998	VXEFC212E	VXEFC212F
3"	80	16	151	239	126	174	248	33,3	181,4	3741	VXEFC300E	VXEFC300F
4"	100	16	174,5	270	145	212	283	39,3	204,4	6337	VXEFC400E	VXEFC400F

VXEAC

Válvula de bola de 2 vías Easyfit con conexiones hembra para encolar, serie ASTM

d	DN	PN		С	C ₁		Н			g	Código EPDM	Código FPM
2"1/2	65	16	142	214	115	157	211	44,5	122	2998	VXEAC212E	VXEAC212F
3"	80	16	151	239	126	174	248	48	152	3741	VXEAC300E	VXEAC300F
4"	100	16	174,5	270	145	212	283	57,5	168	6337	VXEAC400E	VXEAC400F


ACCESORIOS

d

CVDE

Conectores de PE100 largos, para soldaduras con manguitos electrosoldables o a tope

d	DN	PN	L	SDR	Código
75	65	16	111	11	CVDE11075
90	80	16	118	11	CVDE11090VXE
110	100	16	127	11	CVDE11110VXE

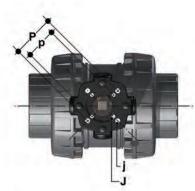
PSE

Eje de prolongación

d	inch	DN	А	A ₁	В	B min	Código tubo ISO	Código tubo ASTM-BS
75	2"1/2	65	76	63	159	364	PSE090	PSE300
90	3"	80	76	63	166	371	PSE090	PSE300
110	4"	100	76	63	186	433	PSE110	PSE400

LCE

Tapón de protección transparente con placa portaetiquetas


d	DN	Código VEE
75	65	LCE040
90	80	LCE040
110	100	LCE040

LSE

Paquete de personalización e impresión de etiquetas para la maneta Easyfit compuesto por hojas adhesivas precortadas y por el software para la creación guiada de las etiquetas

d	DN	Código VXE VEE
75	65	LSE040
90	80	LSE040
110	100	LSE040

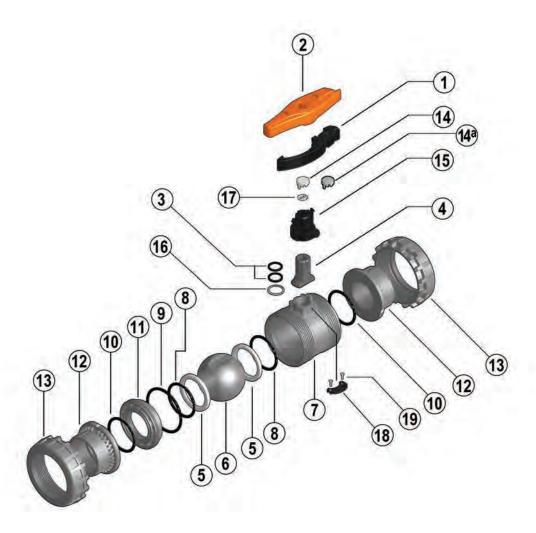
Power Quick Easyfit
La válvula puede equiparse con actuadores neumáticos o eléctricos estándar y volantes
reductores para operaciones pesadas, mediante un kit de actuación de PP-GR que reproduce
la plantilla de perforación prevista por la norma ISO 5211

d	DN	$B_{\!\scriptscriptstyle 2}$	Q		рхј		Código
75	65	129	14	16	F05 x 6,5	F07 x 8,5	PQE090
90	80	136	14	16	F05 x 6,5	F07 x 8,5	PQE090
110	100	156	17	19	F05 x 6,5	F07 x 8,5	PQE110

PERSONALIZACIÓN

Fig. 1

Fig. 2


La válvula VXE DN 65÷100 Easyfit está dotada del sistema de etiquetado Labelling System.

Este sistema permite la realización por cuenta propia de etiquetas especiales para introducir en la maneta. De esta manera, se vuelve extremadamente fácil aplicar a las válvulas las marcas de las empresas, números de serie de identificación o indicaciones de servicio como, por ejemplo, la función de la válvula dentro de la instalación o el fluido transportado, pero también información específica para el servicio al cliente, como el nombre del mismo o la fecha y el lugar de instalación. El módulo específico LCE se suministra de serie y está compuesto por un tapón de PVC rígido transparente resistente al agua (A) y de una placa portaetiquetas blanca (B), del mismo material, que en una cara lleva la marca FIP (fig. 1). La placa, introducida en el interior del tapón, puede retirarse y, una vez que se le ha dado la vuelta, puede personalizarse mediante la aplicación de etiquetas impresas con el software suministrado junto con el paquete LSE. Para aplicar la etiqueta a la válvula, proceder de esta manera:

- 1) Desenganchar la maneta del cubo central (C) y extraer el tapón transparente del mismo.
- 2) Extraer la placa portaetiquetas del tapón transparente (fig. 2).
- Aplicar la etiqueta adhesiva a la placa portaetiquetas de manera que los perfiles queden alineados respetando la posición de la lengüeta.
- 4) Volver a introducir la placa portaetiquetas en el tapón transparente de forma que la etiqueta quede protegida de los agentes atmosféricos.
- 5) Aplicar el tapón transparente al cubo central haciendo que los dos encastres (uno estrecho y uno ancho) coincidan con los respectivos alojamientos.

COMPONENTES

DESPIECE

- 1 Inserto maneta multifunción Easyfit (PP-GR-1)
- 2 Maneta multifunción Easyfit (HIPVC-1)
- Junta tórica eje de comando (EPDM o FPM-2)*
- 4 Eje de comando (PVC-C-1)
- 5 Asiento de estanqueidad de la bola (PTFE-2)*
- 6 Bola (PVC-C-1)*
- 7 Cuerpo (PVC-C-1)

- Junta tórica de la bola (EPDM o FPM-2)*
- 9 Junta tórica de estanqueidad radial (EPDM o FPM-1)*
- Juna tórica de estanqueidad del manguito (EPDM o FPM-2)*
- 11 Soporte de la junta de la bola (PVC-C-1)
- 12 Manguito (PVC-C-2)
- 13 Tuerca (PVC-C-2)

- Tapón de protección transparente (PVC-1)
- 15 Cubo central (HIPVC-1)
- 16 Disco antifricción (PTFE-1)*
- 17 Placa portaetiquetas (PVC-U-1)
- 18 Pletina bloqueo maniobra (HIPVC-1)
- 19 Tornillo autorroscante (Acero INOX-2)

Entre paréntesis se indica el material del componente y la cantidad suministrada

^{*}Repuestos

DESMONTAJE

- 1) Aislar la válvula de la línea (quitar la presión y vaciar la tubería).
- 2) Extraer la maneta multifunción Easyfit del cubo central aplicando una presión hacia el centro sobre los fijadores de enganche del cubo (fig. 5) y utilizarla como llave para desenroscar completamente las tuercas (13) del cuerpo válvula y extraer lateralmente del cuerpo (fig. 5).
- 3) Volver a colocar la maneta en el cubo central.
- 4) Antes de desmontar la válvula, hay que drenar los posibles residuos de líquido que hayan quedado en su interior abriendo en 45° la válvula en posición vertical.
- 5) Colocar la válvula en la posición de apertura.
- 6) Proceder a la retirada del soporte de los asientos de la bola (11) utilizando la maneta de desenganche rápido Easyfit. Introducir los dos salientes presentes en el lado superior de la maneta en los oportunos alojamientos del soporte (11) y proceder a desatornillar el mismo, extrayéndolo con una rotación en el sentido contrario al de las aquias del reloj (fig. 6).
- 7) Presionar sobre la bola desde el lado opuesto al rótulo "REGULAR", prestando atención a no rayarla, hasta obtener la salida del soporte del asiento de estanqueidad del soporte (5), después, extraer la bola (6).
- 8) Retirar el cubo central (15) extrayéndolo con fuerza del eje de comando (4). Presionar el eje de comando hacia el interior hasta extraerlo del cuerpo y retirar el disco antifricción (16).
- 9) Retirar las juntas tóricas (3, 8, 9, 10) y los asientos de estanqueidad de la bola (5) extrayéndolas de su alojamiento, como se indica en el despiece.

MONTAJE

- Todas las juntas tóricas (3, 8, 9, 10) deben introducirse en sus alojamientos, como indica el despiece.
- 2) Colocar el disco antifricción (16) en el eje de comando (4) e introducirlo en el interior del cuerpo (7).
- 3) Introducir los asientos de estanqueidad de la bola (5) en los correspondientes alojamientos del cuerpo (7) y del soporte (11).
- 4) Introducir la bola (6) y girarla en posición de cierre.
- 5) Introducir la abrazadera (11) en el cuerpo y enroscar hasta el tope en el sentido de las agujas del reloj utilizando la maneta (2).
- 6) Colocar el cubo central (15) en el eje de comando (4) aplicando una presión decidida hacia abajo haciendo coincidir la chaveta interna del cubo con uno de los dos alojamientos presentes en el eje de comando.
- 7) Posicionar la válvula entre los manguitos (12) y apretar las tuercas (13) en el sentido de las agujas del reloj, utilizando la maneta multifunción Easyfit (fig. 9), prestando atención a que las juntas tóricas de estanqueidad del manguito (10) no sobresalgan de sus alojamientos.
- 8) Volver a introducir el inserto (1) en su alojamiento correspondiente en la maneta (2).
- 9) Volver a colocar la maneta en el cubo central asegurándose de que coincidan las dos ranuras internas del orificio central de la maneta con las dos nervaduras presentes en un lado del cubo y aplicar una ligera presión hacia abajo hasta que se produzca el enganche de los dos fijadores.

Nota: en las operaciones de montaje, se aconseja lubricar las juntas de goma. Para ello, se recuerda que no es adecuado el uso de aceites minerales, que resultan agresivos para la junta EPDM.

Fig. 2

Fig. 3

Fig. 4

INSTALACIÓN

Antes de proceder a la instalación, seguir atentamente las instrucciones de montaje:

- Verificar que las tuberías a las que se debe conectar la válvula estén alineadas para evitar esfuerzos mecánicos sobre las conexiones roscadas de la misma.
- 2) Desenroscar las tuercas (13) del cuerpo (7) e introducirlas en los tramos de tubo.
- 3) Proceder al encolado o enroscado de los manguitos (12) en los tramos de tubo.
- 4) Posicionar el cuerpo de la válvula entre los manguitos. Atención: si estuviera prevista una prueba a alta presión, colocar siempre el cuerpo con el rótulo "REGULAR" aguas arriba respecto a la dirección del fluido.
- 5) Embocar las tuercas en el cuerpo de la válvula y comenzar el apriete a mano en el sentido de las agujas del reloj hasta percibir una resistencia a la rotación. Para completar el apriete, extraer la maneta multifunción de desenganche rápido Easyfit (2) aplicando una presión hacia el centro sobre los fijadores de enganche del tubo central (15) (fig. 3 y 4).
- 6) Extraer el inserto (1) alojado en el interior de la maneta (fig. 7), dándole la vuelta y enganchándolo en el alojamiento correspondiente situado en el lado inferior de la maneta (fig. 8).
- 7) Enganchar la herramienta compuesta de esta manera (fig. 8) en el perfil externo de la tuerca hasta obtener un encastre firme y seguro que permita ejercer el par de apriete adecuado sin dañar de ninguna manera la tuerca (fig. 9).
- 8) Repetir el punto 7 para la otra tuerca.
- 9) Una vez terminado el apriete, retirar el inserto y volver a colocarlo en su alojamiento en el interior de la maneta.
- 10) Volver a colocar la maneta en el cubo central asegurándose de que coincidan las dos ranuras internas del orificio central de la maneta con las dos nervaduras presentes en un lado del cubo y aplicar una ligera presión hacia abajo hasta que se produzca el enganche de los dos fijadores.
- 11) Si fuera necesario, sujetar las tuberías mediante abrazaderas de tubería FIP modelo ZIKM con distanciadores DSM.
 - La válvula VXE está dotada de un sencillo sistema de bloqueo de la maniobra tanto en cierre como en apertura mediante la introducción de un candado para proteger la instalación contra manipulaciones (fig. 10).

• En caso de uso de líquidos volátiles como por ejemplo peróxido de hidrógeno (H_2O_2) o hipoclorito sódico (NaClO), se aconseja, por razones de seguridad, ponerse en contacto con el servicio técnico. Tales líquidos, al vaporizarse, podrían crear sobrepresiones peligrosas en la zona entre cuerpo y bola. Evitar maniobras bruscas de cierre y proteger la válvula de maniobras accidentales.

Fig.7

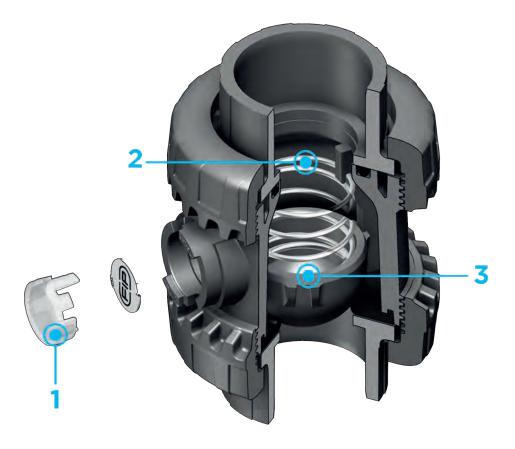
Fig.8

SSE DN 10÷50

PVC-C

Válvula de retención de bola Easyfit con 2 tuercas

SSE **DN 10÷50**


La línea de válvulas de retención de bola SSE Easyfit desarrollada con Giugiaro Design se distingue por su innovador método de instalación, que garantiza un servicio fiable a lo largo del tiempo. Además, esta válvula está dotada de sistema de personalización Labelling System.

VÁLVULA DE RETENCIÓN DE BOLA EASYFIT CON 2 TUERCAS

- Sistema de unión encolado y roscado.
- Compatibilidad del material de la válvula (PVC-C) con el transporte de agua, agua potable y otras sustancias alimentarias según las normativas vigentes.
- Cuerpo de la válvula PN16 de desmontaje radial (True Union) realizado mediante moldeo por inyección de PVC-C y conforme con la Directiva Europea 97/23/CE para equipos a presión PED. Requisitos de prueba de acuerdo con ISO 9393.
- Diámetro de reducidas dimensiones según las normativas internacionales ISO 7508 serie III "short" y completa intercambiabilidad con los modelos de válvulas de bola VXE DN 10÷50.
- Tuercas realizadas con muescas para la regulación del apriete mediante la maneta Easyfit o mediante el Kit de regulación Easytorque (disponibles como accesorios).
- Posibilidad de instalación tanto en vertical (preferible) como en horizontal.

Especificaciones técnicas				
Construcción	Válvula de retención de bola Easyfit con 2 tuercas de desmontaje radial con soporte bloqueado			
gama dimensional	DN 10 ÷ 50			
Presión nominal	PN 16 con agua a 20° C			
Rango de temperatura	0 °C ÷ 100 °C			
Estándares de unión	Encolado : EN ISO 15493, ASTM F 439. CUnibles con tubos según EN ISO 15493, ASTM F 441			
	Roscado : ISO 228-1, DIN 2999, ASTM F 437			
Referencias normativas	Criterios constructivos: EN ISO 16137, EN ISO 15493			
	Métodos y requisitos de las pruebas: ISO 9393			
	Criterios de instalación: DVS 2204, DVS 2221, UNI 11242			
Material de la válvula	PVC-C			
Material de las juntas	EPDM, FKM			
Spring material (SSE)	Available in STAINLESS steel 316, Hastelloy C276, A316 PTFE encapsulated (DN 32, DN 40 and DN 50 only)			

- Sistema de personalización
 Labelling System: módulo LCE
 integrado en el cuerpo de la
 válvula compuesto por tapón
 de protección transparente y
 por una placa portaetiquetas
 personalizable mediante el
 paquete LSE (disponible como
 accesorio). La posibilidad de
 personalización permite identificar
 la válvula en la instalación en
 función de exigencias específicas.
- Diseño fluidodinámico optimizado: ahorro energético gracias a la mejora del valor de Kv de la válvula, con la consiguiente reducción de las pérdidas de carga.
- Obturador esférico con acabado superficial de alta calidad: reducción del desgaste, aumento del tiempo de vida y reducida necesidad de mantenimiento de la válvula. Ideal para el transporte de fluidos sucios, incluso con sólidos o filamentos en suspensión gracias al diseño especial que permite la autolimpieza del interior de la válvula.

DATOS TÉCNICOS

VARIACIÓN DE LA PRESIÓN EN FUNCIÓN DE LA TEMPERATURA

Para agua o fluidos no peligrosos para los cuales el material está clasificado como QUÍMICAMENTE RESISTENTE. En otros casos es necesaria una disminución adecuada de la presión nominal PN (25 años con factor de seguridad).

Nota: Para el empleo del PVC-C con temperaturas de funcionamiento superiores a 90°, se aconseja ponerse en contacto con el servicio técnico.

Temperatura de funcionamiento

50

1343

DIAGRAMA DE PÉRDIDA DE CARGA

258

10 25 32 40

643

928

433

COEFICIENTE DE FLUJO K,,100

Por coeficiente de flujo $k_{\nu}100$ se entiende el caudal Q en litros por minuto de agua a 20 °C que genera una pérdida de carga $\Delta p=1$ bar para una determinada posición de la válvula. los valores $k_{\nu}100$ indicados en la tabla son para la válvula SSE completamente abierta.

PRESIÓN MÍNIMA PARA LA ESTANQUEIDAD DE LA VÁLVULA

La válvula SSE de PVC-C puede utilizarse solo con líquidos que tengan un peso específico inferior a 1,50 g/cm³.

DN	10	15	20	25	32	40	50
SSE (bar)	0.08	0.08	0.08	0.08	0.08	0.08	0.08

Los datos de este catálogo se suministran de buena fe. FIP no asume ninguna responsabilidad por los datos no derivados directamente de normas internacionales. FIP se reserva el derecho de aportar cualquier modificación. La instalación y el mantenimiento del producto deben ser realizados por personal cualificado.

DN

min

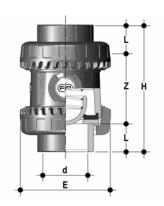
k_100 i/

10

172

15

152


DIMENSIONES

SSEIC

Válvula de retención de bola Easyfit con conexiones hembra para encolar, serie métrica

d	DN	PN	Е	Н	L	Z	g	Código EPDM	Código FPM
16	10	16	54	82	14	54	157	SSEIC016E	SSEIC016F
20	15	16	54	82	16	50	160	SSEIC020E	SSEIC020F
25	20	16	63	91	19	53	198	SSEIC025E	SSEIC025F
32	25	16	72	103	22	59	315	SSEIC032E	SSEIC032F
40	32	16	85	120	26	68	481	SSEIC040E	SSEIC040F
50	40	16	100	139	31	77	688	SSEIC050E	SSEIC050F
63	50	16	118	174	38	98	1090	SSEIC063E	SSEIC063F

SSEAC

Válvula de retención de bola Easyfit con conexiones hembra, serie ASTM

d	DN	PN		Н			g	Código EPDM	Código FPM
1/2"	15	16	54	96	22,5	51	158	SSEAC012E	SSEAC012F
3/4"	20	16	63	105	25,5	54	200	SSEAC034E	SSEAC034F
1"	25	16	72	117	28,7	59,5	315	SSEAC100E	SSEAC100F
1" 1/4	32	16	85	136	32	72	505	SSEAC114E	SSEAC114F
1" 1/2	40	16	100	147	35	77	686	SSEAC112E	SSEAC112F
2"	50	16	118	174	38,2	97,6	1119	SSEAC200E	SSEAC200F

ACCESORIOS

d

CVDE

Conectores de PE100 largos, para soldaduras con manguitos electrosoldables o a tope

d	DN	PN		SDR	Código
20	15	16	55	11	CVDE11020
25	20	16	70	11	CVDE11025
32	25	16	74	11	CVDE11032
40	32	16	78	11	CVDE11040
50	40	16	84	11	CVDE11050
63	50	16	91	11	CVDE11063

MANETA EASYFIT DN 10÷50

Maneta multifunción Easyfit para el apriete de las tuercas SXE-SSE DN 10÷50

d	DN	Código
16 20	10 15	HAVXE020
25	20	HAVXE025
32	25	HAVXE032
40	32	HAVXE040
52	40	HAVXE050
63	50	HAVXE063

SE

Paquete de personalización e impresión de etiquetas para maneta Easyfit compuesto por hojas adhesivas y por el software para la creación guiada de las etiquetas.

d	DN	Código SXE-SSE
16	10	_
20	15	_
25	20	-
32	25	LSE020
40	32	LSE025
50	40	LSE032
63	50	LSE032

PERSONALIZACIÓN

Fig. 2

Fig. 3

La válvula SSE DN 10÷50 Easyfit está dotada del sistema de etiquetado Labelling System.

Este sistema permite la realización por cuenta propia de etiquetas especiales para el cuerpo válvula. De esta manera, se vuelve extremadamente fácil aplicar a las válvulas las marcas de las empresas, números de serie de identificación o indicaciones de servicio como, por ejemplo, la función de la válvula dentro de la instalación o el fluido transportado, pero también información específica para el servicio al cliente, como el nombre del mismo o la fecha y el lugar de instalación. El módulo específico LCE suministrado de serie se compone de un tapón de PVC rígido transparente resistente al agua y de una placa portaetiquetas blanca, del mismo material, que en una cara lleva la marca FIP (fig.1).

La placa portaetiquetas, introducida en el interior del tapón, puede retirarse y, una vez que se le ha dado la vuelta, puede personalizarse mediante la aplicación de etiquetas impresas con el software suministrado junto con el paquete LSE. Para aplicar la etiqueta a la válvula, proceder de esta manera:

- 1) Extraer el tapón transparente de su alojamiento en el cuerpo válvula (fig. 1).
- 2) Extraer la placa portaetiquetas del tapón transparente (fig. 2).
- 3) Aplicar la etiqueta adhesiva a la placa portaetiquetas de manera que queden alineados los perfiles respetando la posición de la lengüeta
- 4) Volver a introducir la placa portaetiquetas en el tapón transparente de forma que la etiqueta quede protegida de los agentes atmosféricos.
- 5) Volver a colocar el tapón transparente en su alojamiento en el cuerpo válvula.

COMPONENTES

DESPIECE

- 1 Tuerca (PVC-C-2)
- 2 Manguito (PVC-C-2)
- Junta tórica de estanqueidad del manguito (EPDM o FPM-2)
- 4 Cuerpo (PVC-C-1)

- 5 Placa portaetiquetas (PVC-1)
- Tapón de protección transparente (PVC-1)
- 7 Bola (PVC-C-1)
- 8 Anillo prensaestopa (PVC-C-1)
- Junta tórica de la bola (EPDM o FPM-1)
- 10 Soporte de la junta de la bola (PVC-C-1)
- Junta tórica de estanqueidad radial (EPDM o FPM-1)

Entre paréntesis se indica el material del componente y la cantidad suministrada

DESMONTAJE

La válvula SSE no necesita mantenimiento en caso de condiciones de funcionamiento normales. En caso de pérdidas o desgaste, antes de proceder al mantenimiento, hay que interceptar el fluido aquas arriba de la válvula y asegurarse de que no permanezca bajo presión

(descargar aguas abajo si fuera necesario).

- Drenar completamente el líquido residual que podría ser agresivo para el usuario y, si es posible, hacer que el agua circule para el lavado interno de la válvula.
- 2) Con el fin de agilizar el desatornillado de las tuercas en fase de desmontaje, es posible utilizar la maneta multifunción Easyfit (suministrada como accesorio) (fig. 4) o el kit Easytorque (fig. 5-6).
- 3) Desenroscar el soporte de la junta (10) con la maneta multifunción Easyfit (fig. 7) o el kit Easytorque (fig. 8).
- 4) Sacar todos los componentes internos.

MONTAJE

- 1) Volver a montar la válvula siguiendo el despiece de la página precedente.
- 2) Apretar el soporte de la junta (10) con la ayuda de la maneta multifunción Easyfit (fig. 7) o mediante la llave dinamométrica Easytorque (fig. 8) de acuerdo con los pares de cierre indicados en las instrucciones suministradas junto con la misma. De esta manera se aseguran la instalación y el funcionamiento perfectos de la válvula.
- 3) Colocar la válvula entre los manguitos (2) y apretar las tuercas en el sentido de las agujas del reloj (1) utilizando la maneta multifunción Easyfit (fig. 4) o el kit Easytorque (fig.5-6), prestando atención a que las juntas tóricas de estanqueidad de cabeza (3) no sobresalgan de sus alojamientos.

Nota en las operaciones de montaje, se aconseja lubricar las juntas de goma. Para ello, se recuerda que no es adecuado el uso de aceites minerales, que resultan agresivos para la junta EPDM.

Fig. 5

Fig. 6

Fig. 7

INSTALACIÓN

Las válvulas SSE pueden instalarse tanto vertical (flujo hacia arriba) como horizontalmente (con una contrapresión mínima de 0,2 bar).

Antes de proceder a la instalación, seguir atentamente las instrucciones de montaje:

- 1) Verificar que las tuberías a las que se debe conectar la válvula estén alineadas para evitar esfuerzos mecánicos sobre las conexiones roscadas de la misma.
- 2) Desenroscar las tuercas (1) del cuerpo (4) e introducirlas en los tramos de tubo.
- Proceder al encolado o enroscado de los manguitos (2) en los tramos de tubo.
- 4) Posicionar el cuerpo de la válvula entre los manguitos (fig. 9).
- 5) Embocar las tuercas en el cuerpo válvula y apretarlas manualmente en el sentido de las agujas del reloj hasta percibir una resistencia a la rotación; no utilizar llaves u otras herramientas que pudieran dañar la superficie de las tuercas.
- 6) Con el fin de agilizar el enroscado de las tuercas en fase de montaje, es posible utilizar la maneta multifunción Easyfit (suministrada como accesorio).
- 7) Dar la vuelta a la maneta e introducirla en el eje de mando de la válvula para que coincidan el dentado (A) de la maneta con el dentado de la tuerca (B) (fig. 10)
- 8) Girar la maneta en el sentido contrario a las agujas del reloj para extraer completamente la tuerca (fig.10). En la maneta está indicado el sentido de rotación para apretar (TIGHTEN) y para aflojar (UNTIGHTEN) las tuercas (fig. 11). Generalmente, si no hay desalineaciones de las tuberías, una sola rotación es suficiente para el apriete correcto.
- Repetir el punto 7 para la otra tuerca.
 Nota: Un pequeño esfuerzo aplicado a la maneta desarrolla un par muy superior al de un apriete manual.
 - ES posible también, mediante el kit Easytorque (fig. 5-6), suministrado como accesorio, efectuar el apriete de las tuercas utilizando una llave dinamométrica para cuantificar los esfuerzos y, por tanto, monitorizar el estrés aplicado a las roscas termoplásticas de acuerdo con las indicaciones de instalación presentes en las instrucciones adjuntas al propio kit.
- 10) Si es necesario, sujetar la tubería mediante abrazaderas de tubería FIP modelo ZIKM con distanciadores DSM.

- ullet En caso de uso de líquidos volátiles como por ejemplo peróxido de hidrógeno ($\mathrm{H_2O_2}$) o hipoclorito sódico (NaClO), se aconseja, por razones de seguridad, ponerse en contacto con el servicio técnico. Tales líquidos, al vaporizarse, podrían crear sobrepresiones peligrosas en la zona entre cuerpo y bola. No utilizar aire comprimido u otros gases para la prueba de las líneas termoplásticas.
- Evitar siempre maniobras de cierre bruscas y proteger la válvula de maniobras accidentales.

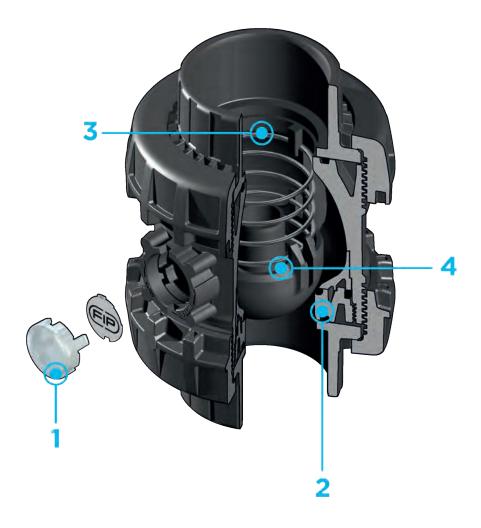
SSE DN 65÷100

PVC-C

Válvula de retención de bola Easyfit con 2 tuercas

SSE **DN 65÷100**

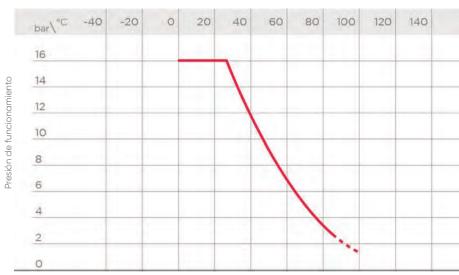
La línea de válvulas de retención de bola SSE Easyfit desarrollada con Giugiaro Design se distingue por su innovador método de instalación, que garantiza un servicio fiable a lo largo del tiempo.


Además, esta válvula está dotada de sistema de personalización Labelling System.

VÁLVULA DE RETENCIÓN DE BOLA EASYFIT CON 2 TUERCAS

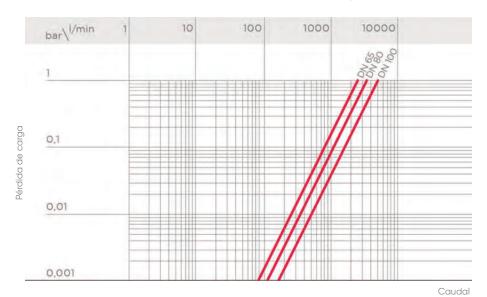
- Sistema de unión encolado y roscado.
- Compatibilidad del material de la válvula (PVC-C) con el transporte de agua, agua potable y otras sustancias alimentarias según las normativas vigentes.
- Cuerpo de la válvula PN16 de desmontaje radial (True Union) realizado mediante moldeo por inyección de PVC-C y conforme con la Directiva Europea 97/23/CE para equipos a presión PED. Requisitos de prueba de acuerdo con ISO 9393.
- Fácil desmontaje radial de la instalación y completa intercambiabilidad con los modelos de válvula de bola VXE 65÷100.
- Perfil de las tuercas que se adapta perfectamente al inserto maneta multifunción Easyfit (disponible como accesorio) o mediante el mediante el cual es posible realizar un control de la rotación de las tuercas.
- Posibilidad de instalación tanto en vertical (preferible) como en horizontal.

Especificaciones técnicas					
Construcción	Válvula de retención de bola Easyfit con 2 tuercas de desmontaje radial con soporte bloqueado				
gama dimensional	DN 10 ÷ 50				
Presión nominal	PN 16 con agua a 20° C				
Rango de temperatura	0 °C ÷ 100 °C				
Estándares de unión	Encolado : EN ISO 15493, ASTM F 439. CUnibles con tubos según EN ISO 15493, ASTM F 441				
	Roscado : ISO 228-1, DIN 2999, ASTM F 437				
Referencias normativas	Criterios constructivos: EN ISO 16137, EN ISO 15493				
	Métodos y requisitos de las pruebas: ISO 9393				
	Criterios de instalación: DVS 2204, DVS 2221, UNI 11242				
Material de la válvula	PVC-C				
Material de las juntas	EPDM, FKM				
Spring material (SSE)	Available in STAINLESS steel 316, Hastelloy C276, A316 PTFE encapsulated (DN 32, DN 40 and DN 50 only)				


- Sistema de personalización
 Labelling System: módulo LCE
 integrado en el cuerpo de la
 válvula compuesto por tapón
 de protección transparente y
 por una placa portaetiquetas
 personalizable mediante el
 paquete LSE (disponible como
 accesorio). La posibilidad de
 personalización permite identificar
 la válvula en la instalación en
 función de exigencias específicas.
- Diseño fluidodinámico optimizado: ahorro energético gracias a la mejora del valor de Kv de la válvula, con la consiguiente reducción de las pérdidas de carga.
- Obturador esférico con acabado superficial de alta calidad: reducción del desgaste, aumento de su vida útil y menor necesidad de mantenimiento de la válvula. Ideal para transportar fluidos
- sucios, también con sólidos o filamentos en suspensión, gracias al diseño especial que permite una **autolimpieza del interior de la válvula.**
- Soporte de la junta primaria roscado: desmontaje seguro para operaciones de mantenimiento que pueden efectuarse con la maneta multifunción Easyfit.

DATOS TÉCNICOS

VARIACIÓN DE LA PRESIÓN EN FUNCIÓN DE LA TEMPERATURA


Para agua o fluidos no peligrosos para los cuales el material está clasificado como QUÍMICAMENTE RESISTENTE. En otros casos es necesaria una disminución adecuada de la presión nominal PN (25 años con factor de seguridad).

Nota: Para el empleo del PVC-C con temperaturas de funcionamiento superiores a 90°, se aconseja ponerse en contacto con el servicio técnico.

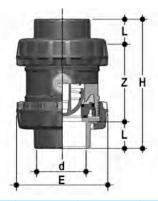
Temperatura de funcionamiento

DIAGRAMA DE PÉRDIDA DE CARGA

COEFICIENTE DE FLUJO K,,100

Por coeficiente de flujo k_v 100 se entiende el caudal Q en litros por minuto de agua a 20 °C que genera una pérdida de carga Δp = 1 bar para una determinada posición de la válvula. los valores k_v 100 indicados en la tabla son para la válvula SSE completamente abierta.

PRESIÓN MÍNIMA PARA LA ESTANQUEIDAD DE LA VÁLVULA


La válvula SSE de PVC-C puede utilizarse solo con líquidos con un peso específico inferior a 1,50 g/cm³.

DN	65	80	100
k _v 100 I/min	2586	3444	5093

DN	65	80	100
SSE (bar)	0,08	0,08	0,08

Los datos de este catálogo se suministran de buena fe. FIP no asume ninguna responsabilidad por los datos no derivados directamente de normas internacionales. FIP se reserva el derecho de aportar cualquier modificación. La instalación y el mantenimiento del producto deben ser realizados por personal cualificado.

DIMENSIONES

SSEIC

Válvula de retención de bola Easyfit con conexiones hembra para encolar, serie métrica

d	DN	PN		Н			g	Código EPDM	Código FPM
75	65	16	157	211	44	123	2652	SSEIC075E	SSEIC075F
90	80	16	174	248	51	146	3365	SSEIC090E	SSEIC090F
110	100	16	212	283	61	161	5898	SSEIC110E	SSEIC110F

SSEAC

Válvula de retención de bola Easyfit con conexiones hembra para encolar, serie ASTM

d	DN	PN		Н			g	Código EPDM	Código FPM
2" 1/2	65	16	157	211	44,5	122	2654	SSEAC212E	SSEAC212F
3"	80	16	174	248	48	152	3321	SSEAC300E	SSEAC300F
∠,"	100	16	212	283	57,5	168	5870	SSEAC400E	SSEAC400F

ACCESORIOS

d

CVDE

Conectores de PE100 largos, para soldaduras con manguitos electrosoldables o a tope

d	DN	PN		SDR	Código
75	65	16	111	11	CVDE11075
90	80	16	118	11	CVDE11090VXE
110	100	16	127	11	CVDE11110VXE

EASYFIT HANDLE DN 65÷100

Maneta multifunción Easyfit para el apriete de las tuercas SXE-SSE DN 65÷100

d	DN	Código
75	65	HSVXE075
90	80	HSVXE090
110	100	HSVXE110

LSF

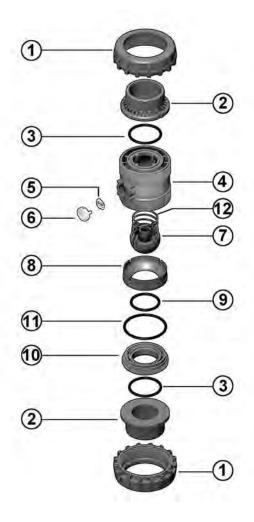
Paquete de personalización e impresión de etiquetas para maneta Easyfit compuesto por hojas adhesivas y por el software para la creación guiada de las etiquetas.

d	DN	Código SXE SSE
75	65	LSE063
90	80	LSE063
110	100	LSE063

PERSONALIZACIÓN

La válvula SSE DN 65÷100 Easyfit está dotada del sistema de etiquetado Labelling Svstem.

Este sistema permite la realización por cuenta propia de etiquetas especiales para el cuerpo válvula. De esta manera, se vuelve extremadamente fácil aplicar a las válvulas las marcas de las empresas, números de serie de identificación o indicaciones de servicio como, por ejemplo, la función de la válvula dentro de la instalación o el fluido transportado, pero también información específica para el servicio al cliente, como el nombre del mismo o la fecha y el lugar de instalación. El módulo específico LCE se suministra de serie y está compuesto por un tapón de PVC rígido transparente resistente al agua y por una placa portaetiquetas blanca, del mismo material, que en una cara lleva la marca FIP.


La placa, introducida en el interior del tapón, puede retirarse y, una vez que se le ha dado la vuelta, puede personalizarse mediante la aplicación de etiquetas impresas con el software suministrado junto con el paquete LSE.

Para aplicar la etiqueta a la válvula, proceder de esta manera:

- 1) Extraer el tapón transparente de su alojamiento en el cuerpo válvula.
- 2) Extraer la placa portaetiquetas del tapón transparente.
- 3) Aplicar la etiqueta adhesiva a la placa de manera que los perfiles queden alineados respetando la posición de la lengüeta.
- 4) Volver a introducir la placa portaetiquetas en el tapón transparente de forma que la etiqueta quede protegida de los agentes atmosféricos.
- 5) Volver a colocar el tapón transparente en su alojamiento en el cuerpo válvula.

COMPONENTES

DESPIECE

- 1 Tuerca (PVC-C-2)
- 2 Manguito (PVC-C-2)
- Junta tórica de estanqueidad del manguito (EPDM o FPM-2)
- 4 Cuerpo (PVC-C-1)
- 5 Placa portaetiquetas (PVC-1)
- Tapón de protección transparente (PVC-1)
- **7** Bola (PVC-C-1)
- 8 anillo prensaestopa (PVC-C-1)
- Junta tórica de la bola (EPDM o FPM-1)
- Soporte de la junta de la bola (PVC-C-1)
- Junta tórica de estanqueidad radial (EPDM o FPM-1)

Entre paréntesis se indica el material del componente y la cantidad suministrada

DESMONTAJE

La válvula SSE no necesita mantenimiento en caso de condiciones de funcionamiento normales. En caso de pérdidas o desgaste, antes de proceder al mantenimiento, hay que interceptar el fluido aguas arriba de la válvula y asegurarse de que no permanezca bajo presión (descargar aguas abajo si fuera necesario).

- 1) Drenar completamente el líquido residual que podría ser agresivo para el usuario y, si es posible, hacer que el agua circule para el lavado interno de la válvula.
- 2) Con el fin de agilizar el desenroscado de las tuercas en fase de desmontaje, es posible utilizar la maneta multifunción Easyfit (suministrada como accesorio).
- 3) Proceder al desenroscado del soporte de la junta de la bola (10) con la maneta multifunción Easyfit: introducir los dos salientes presentes en el lado superior de la maneta en los correspondientes alojamientos del soporte (10) y proceder al desenroscado del mismo, extrayéndolo con rotación en el sentido contrario a las agujas del reloj.
- 4) Sacar todos los componentes internos.

MONTAJE

- 1) Volver a montar la válvula siguiendo el despiece de la página anterior.
- 2) Apretar el soporte de la junta (10) con la ayuda de la maneta multifunción Easyfit. De este modo se asegura la instalación y el funcionamiento óptimos de la válvula (fig. 3).
- 3) Posicionar la válvula entre los manguitos (2) y apretar las tuercas (1) en el sentido de las agujas del reloj, utilizando la maneta multifunción Easyfit (fig. 7), prestando atención a que las juntas tóricas de estanqueidad de cabeza (3) no sobresalgan de sus alojamientos.

Nota: en las operaciones de montaje, se aconseja lubricar las juntas de goma. Para ello, se recuerda que no es adecuado el uso de aceites minerales, que resultan agresivos para la junta EPDM.

INSTALACIÓN

Las válvulas SSE pueden instalarse tanto vertical (flujo hacia arriba) como horizontalmente (con una contrapresión mínima de 0,2 bar). Antes de proceder a la instalación, seguir atentamente las instrucciones de montaje:

- 1) Verificar que las tuberías a las que se debe conectar la válvula estén alineadas para evitar esfuerzos mecánicos sobre las conexiones roscadas de la misma.
- 2) Desenroscar las tuercas (1) del cuerpo (4) e introducirlas en los tramos de tubo.
- 3) Proceder al encolado o enroscado de los manguitos (2) en los tramos de tubo.
- 4) Posicionar el cuerpo de la válvula entre los manguitos (fig. 1).
- 5) Embocar las tuercas en el cuerpo de la válvula y comenzar el apriete a mano en el sentido de las agujas del reloj hasta percibir una resistencia a la rotación. No utilizar llaves u otras herramientas que puedan dañar la superficie de las tuercas (fig. 2).
- 6) Con el fin de agilizar el enroscado de las tuercas en fase de montaje, es posible utilizar la maneta multifunción Easyfit (suministrada como accesorio).
- 7) Extraer el inserto alojado en el interior de la maneta (fig. 5), dándole la vuelta y enganchándolo en su alojamiento correspondiente situado en el lado inferior de la maneta (fig. 6).
- 8) Enganchar la herramienta compuesta de esta manera en el perfil externo de la tuerca hasta obtener un acople firme y seguro que permita ejercer el par de apriete adecuado sin dañar de ninguna manera la tuerca (fig. 7).
- 9) Repetir el punto 7 para la otra tuerca.
- 10) Una vez terminado el apriete, retirar el inserto y volver a colocarlo en su alojamiento en el interior de la maneta.
- Si fuera necesario, sujetar las tuberías mediante abrazaderas de tubería FIP modelo ZIKM con distanciadores DSM.s.

- $^{\circ}$ En caso de uso de líquidos volátiles como por ejemplo peróxido de hidrógeno ($\mathrm{H_2O_2}$) o hipoclorito sódico (NaClO), se aconseja, por razones de seguridad, ponerse en contacto con el servicio técnico. Tales líquidos, al vaporizarse, podrían crear sobrepresiones peligrosas en la zona entre cuerpo y bola.
- No utilizar aire comprimido u otros gases para la prueba de las líneas termoplásticas.
- Evitar siempre maniobras de cierre bruscas y proteger la válvula de maniobras accidentales.

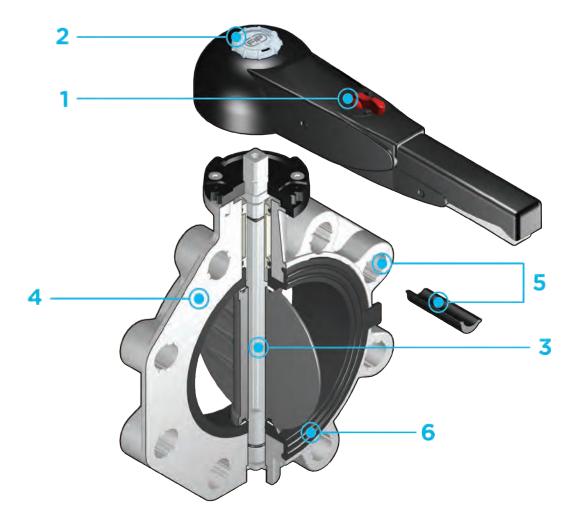
Fig. 7

Fig. 8

FK DN 40÷300

PVC-C

Válvula de mariposa


FK **DN 40÷300**

La FK es una válvula de mariposa de interceptación y regulación, con características estructurales ideales para su uso en aplicaciones industriales que requieren elevadas prestaciones y fiabilidad a lo largo del tiempo. Además, esta válvula está dotada del sistema de personalización Labelling System.

VÁLVULA DE MARIPOSA

- Disco de PVC-C de eje pasante intercambiable de diferentes materiales termoplásticos: PVC-U, PP-H, ABS, PVDF.
- Dimensiones de la válvula de acuerdo con la norma ISO 5752 (DN 40÷200 Medium serie25, DN 250÷300 Long Serie16) y DIN 3202 K2 y ISO 5752 (DN DN 65÷200 K2, DN 250÷300 K3).
- Posibilidad de instalación también como válvula de final de línea o de descarga de fondo o de descarga rápida desde el depósito.
- Versión especial anular Lug PN 10 de agujeros completos DIN 2501 o ANSI B16.5 cl.150 con insertos roscados de acero inoxidable AISI 316 sumergidos en caliente.
- Posibilidad de instalar un reductor manual o actuadores neumáticos y/o eléctricos mediante la instalación de bridas de PP-GR de agujeros estándar ISO Válvula DN 40÷200 dotada de platillo con cremallera de PP-GR. Para versiones motorizadas brida con perforación según ISO 5211 F05, F07, F10.
- Válvula DN 250÷300 dotada de torre monobloque de PP-GR de elevada resistencia mecánica con brida de montaje para órganos de maniobra con agujeros según la normativa ISO 5211 F10, F12, F14.

Especificaciones técnicas	
Construcción	Válvula de mariposa céntrica bidireccional
gama dimensional	DN 40 ÷ 300
Presión nominal	Wafer version DN 40 ÷ 50: PN 16 con agua a 20° C DN 65÷250: PN 10 con agua a 20° C DN 300: PN 8 con agua a 20° C Lug version DN 65÷200: PN 10 con agua a 20° C DN 250÷300: PN 6 con agua a 20° C
Rango de temperatura	0 °C ÷ 100 °C
Estándares de unión	Embridado : EN ISO 15493, DIN 2501, ISO 7005-1, EN 1092-1, ANSI B16.5 CI.150, JIS B2220
Referencias normativas	Criterios constructivos: EN ISO 16136, EN ISO 15493
	Métodos y requisitos de las pruebas: ISO 9393
	Acoplamientos para actuadores: ISO 5211
Material de la válvula	Cuerpo: PP-GR Disco: PVC-C Eje: Acero INOX AISI 420. Bajo pedido Acero INOX 316
Material de las juntas	Junta primaria: EPDM, FPM. Bajo pedido NBR
Opciones de comando	Mando manual (DN 40÷200), volante, actuador neumático, actuador eléctrico

- Maneta ergonómica de HIPVC dotada de un dispositivo de bloqueo, desbloqueo, maniobra rápida y regulación graduada en 10 posiciones intermedias (DN 40÷200). El campo de funcionamiento, a partir de los primeros grados de apertura de la válvula, garantiza, además, valores de pérdida de carga extremadamente reducidos.
- 2 Sistema de personalización
 Labelling System: módulo
 integrado en la maneta,
 compuesto de tapón de
 protección transparente y
 de placa porta etiquetas
 personalizable mediante el juego
 LSE (disponible como accesorio).

- la posibilidad de personalización permite identificar la válvula en la instalación en función de exigencias específicas.
- Eje de acero INOX completamente aislado del fluido de sección cuadrada según ISO 5211:

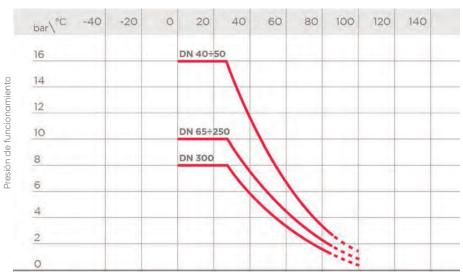
 DN 40÷65: 11 mm

 DN 80÷100: 14 mm

 DN 125÷150: 17 mm

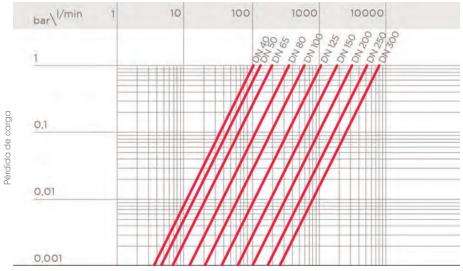
 DN 200: 22 mm

 DN 250÷300: 27 mm
- 4 Cuerpo de compuesto a base polipropileno reforzado con fibra de vidrio (PP-GR) resistente a los rayos UV y caracterizado por una elevada resistencia mecánica.
- Sistema de perforación con agujeros ovalados que permite el acoplamiento de bridas según numerosos estándares internacionales. las especiales lunetas de autocentrado de ABS suministradas para los DN 40÷200 aseguran la correcta alineación axial de la válvula durante la instalación.


 Para los DN 250÷300 el sistema de perforación para autocentrado es de tipo tradicional según los estándares DIN y ANSI.
- Junta primaria intercambiable con doble función de estanqueidad hidráulica y de aislamiento del cuerpo del fluido.

DATOS TÉCNICOS

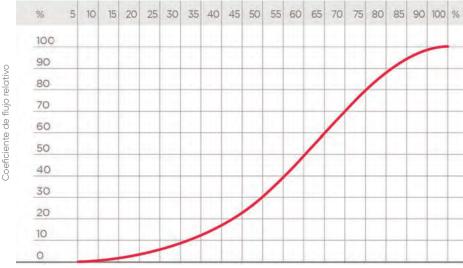
VARIACIÓN DE LA PRESIÓN EN FUNCIÓN DE LA TEMPERATURA


Para agua o fluidos no peligrosos para los cuales el material está clasificado como QUÍMICAMENTE RESISTENTE. En otros casos es necesaria una disminución adecuada de la presión nominal PN (25 años con factor de seguridad).

Nota: Para el empleo del PVC-C con temperaturas de funcionamiento superiores a 90°, se aconseja ponerse en contacto con el servicio técnico.

Temperatura de funcionamiento

DIAGRAMA DE PÉRDIDA DE CARGA


Caudal

COEFICIENTE DE FLUJO K_v100

Por coeficiente de flujo k_v 100 se entiende el caudal Q en litros por minuto de agua a 20 °C que genera una pérdida de carga Δp = 1 bar para una determinada posición de la válvula. Llos valores k_v 100 indicados en la tabla son para la válvula completamente abierta.

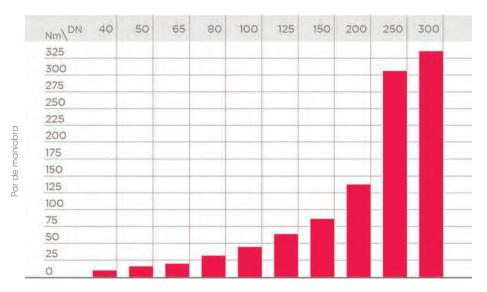
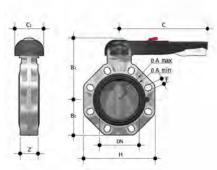
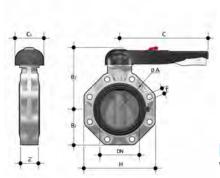

DN	40	50	65	80	100	125	150	200	250	300
k _v 100 I/	1000	1285	1700	3550	5900	9850	18700	30500	53200	81600

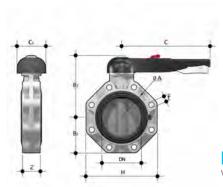
DIAGRAMA DEL COEFICIENTE DE FLUJO RELATIVO


Porcentaje de apertura el disco

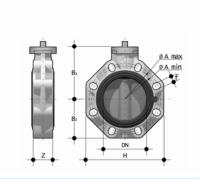
PAR DE MANIOBRA A LA MÁXIMA PRESIÓN DE FUNCIONAMIENTO


Los datos de este catálogo se suministran de buena fe. FIP no asume ninguna responsabilidad por los datos no derivados directamente de normas internacionales. FIP se reserva el derecho de aportar cualquier modificación. La instalación y el mantenimiento del producto deben ser realizados por personal cualificado.

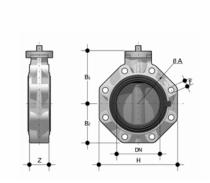
DIMENSIONES


FKOC/LM Válvula de mariposa de mando manual

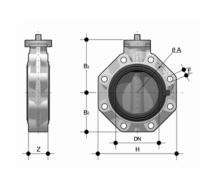
d-Tamaño	DN	PN	A min	A max	$B_{\!\scriptscriptstyle 2}$	B_3	С	C ₁	Н	U	Z	g	Código EPDM	Código FPM
50 1"1/2	40	16	99	109	60	137	175	100	132	4	33	918	FKOCLM050E	FKOCLM050F
63 2"	50	16	115	125,5	70	143	175	100	147	4	43	1081	FKOCLM063E	FKOCLM063F
75 2"1/2	65	10	128	144	80	164	175	110	165	4	46	1254	FKOCLM075E	FKOCLM075F
90 3"	80	10	145	160	93	178	272	110	185	12	49	1987	FKOCLM090E	FKOCLM090F
110 4"	100	10	165	190	107	192	272	110	211	8	56	2405	FKOCLM110E	FKOCLM110F
140 5"	125	10	204	215	120	212	330	110	240	8	64	3347	FKOCLM140E	FKOCLM140F
160 6"	150	10	230	242	134	225	330	110	268	8	70	4212	FKOCLM160E	FKOCLM160F
225 8"	200	10	280	298	161	272	420	122	323	8	71	7250	FKOCLM225E	FKOCLM225F


FKOC/LM LUG ISO-DIN Válvula de mariposa de mando manual, versión Lug ISO-DIN

d	DN	PN	øΑ	$B_{\!\scriptscriptstyle 2}$	B ₃	С	C ₁	f	Н	U	Z	g	Código EPDM	Código FPM
75	65	10	145	80	164	175	110	M16	165	4	46	1554	FKOLCLM075E	FKOLCLM075F
90	80	10	160	93	178	272	100	M16	185	12	49	2342	FKOLCLM090E	FKOLCLM090F
110	100	10	180	107	192	272	110	M16	211	8	56	3257	FKOLCLM110E	FKOLCLM110F
140	125	10	210	120	212	330	110	M16	240	8	64	4345	FKOLCLM140E	FKOLCLM140F
160	150	10	240	134	225	330	110	M20	268	8	70	5820	FKOLCLM160E	FKOLCLM160F
225	200	10	295	161	272	420	122	M20	323	8	71	8896	FKOLCLM225E	FKOLCLM225F


FKOC/LM LUG ANSI Válvula de mariposa de mando manual, versión Lug ANSI

d	DN	PN	øΑ	B ₁	$B_{\!\scriptscriptstyle 2}$	С	C ₁	f	Н	U	Z	g	Código EPDM	Código FPM
2" 1/2	65	10	139,7	119	80	175	110	5/8"	165	4	46	1554	FKOALCLM212E	FKOALCLM212F
3"	80	10	152,4	133	93	175	110	5/8"	185	12	49	2342	FKOALCLM300E	FKOALCLM300F
4"	100	10	190,5	147	107	272	110	5/8"	211	8	56	3257	FKOALCLM400E	FKOALCLM400F
5"	125	10	215,9	167	120	330	110	3/4"	240	8	64	4345	FKOALCLM500E	FKOALCLM500F
6"	150	10	241,3	180	134	330	110	3/4"	268	8	70	5820	FKOALCLM600E	FKOALCLM600F
8"	200	10	298,4	227	161	420	122	3/4"	323	8	71	8896	FKOALCLM800E	FKOALCLM800F


FKOC/FM Válvula de mariposa a eje libre

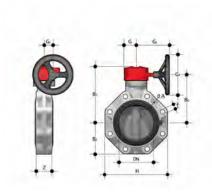
d Tamaño	DN	PN	A min	A max	øΑ	B ₁	B ₂	f	Н	U	Z	g	Código EPDM	Código FPM
50 1"1/2	40	16	99	109	-	106	60	19	132	4	33	597	FKOCFM050E	FKOCFM050F
63 2"	50	16	115	125,5	-	112	70	19	147	4	43	760	FKOCFM063E	FKOCFM063F
75 2"1/2	65	10	128	144	-	119	80	19	165	4	46	933	FKOCFM075E	FKOCFM075F
90 3"	80	10	145	160	-	133	93	19	185	12	49	1388	FKOCFM090E	FKOCFM090F
110 4"	100	10	165	190	-	147	107	19	211	8	56	1806	FKOCFM110E	FKOCFM110F
140 5"	125	10	204	215	-	167	120	23	240	8	64	2659	FKOCFM140E	FKOCFM140F
160 6"	150	10	230	242	-	180	134	23	268	8	70	3524	FKOCFM160E	FKOCFM160F
225 8"	200	10	280	298	-	227	161	23	323	8	71	6284	FKOCFM225E	FKOCFM225F
280	*250	10	-	-	350	248	210	22	405	12	114	13654	FKOCFM280E	FKOCFM280F
315	*300	8	-	-	400	305	245	29	475	12	114	17931	FKOCFM315E	FKOCFM315F
10"	**250	10	-	-	350	248	210	25,4	405	12	114	13654	FKOACFM810E	FKOACFM810F
12"	**300	8	_	_	400	305	245	25.4	475	12	114	17931	FKOACFM812E	FKOACFM812F

FKOC/FM LUG ISO-DIN Válvula de mariposa a eje libre versión Lug ISO-DIN

d	DN	PN	øΑ	B ₁	$B_{\!\scriptscriptstyle 2}$	f	Н	U	Z	g	Código EPDM	Código FPM
75	65	10	145	119	80	M16	165	4	46	1233	FKOLCFM075E	FKOLCFM075F
90	80	10	160	133	93	M16	185	12	49	1743	FKOLCFM090E	FKOLCFM090F
110	100	10	180	147	107	M16	211	8	56	2658	FKOLCFM110E	FKOLCFM110F
140	125	10	210	167	120	M16	240	8	64	3657	FKOLCFM140E	FKOLCFM140F
160	150	10	240	180	134	M20	268	8	70	5132	FKOLCFM160E	FKOLCFM160F
225	200	10	295	227	161	M20	323	8	71	7930	FKOLCFM225E	FKOLCFM225F

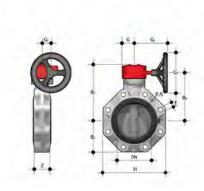
FKOC/FM LUG ANSI Válvula de mariposa a eje libre versión Lug ANSI

d	DN	PN	øΑ	B ₁	B ₂	f	Н	U	Z	g	Código EPDM	Código FPM
2" 1/2	65	10	139,7	119	80	5/8"	165	4	46	1233	FKOALCFM212E	FKOALCFM212F
3"	80	10	152,4	133	93	5/8"	185	12	49	1743	FKOALCFM300E	FKOALCFM300F
4"	100	10	190,5	147	107	5/8"	211	8	56	2658	FKOALCFM400E	FKOALCFM400F
5"	125	10	215,9	167	120	3/4"	240	8	64	3657	FKOALCFM500E	FKOALCFM500F
6"	150	10	241,3	180	134	3/4"	268	8	70	5132	FKOALCFM600E	FKOALCFM600F
8"	200	10	298,4	227	161	3/4"	323	8	71	7930	FKOALCFM800E	FKOALCFM800F
10"	250	6	362	248	210	7/8"	405	12	114	16800	FKOALCFM810E	FKOALCFM810F
12"	300	6	431,8	305	245	7/8"	475	12	114	23800	FKOALCFM812E	FKOALCFM812F



FKOC/RM

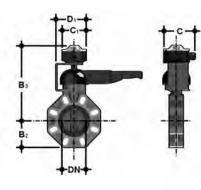
Válvula de mariposa con volante reductor


d Tamaño	DN	PN	A min	A max	øΑ	B ₂	B _s	B ₆	G	G ₁	G ₂	G ₃	Н	U	Z	g	Código EPDM	Código FPM
75 2"1/2	65	10	128	144	-	80	174	146	48	135	39	125	165	4	46	2608	FKOCRM075E	FKOCRM075F
90 3"	80	10	145	160	-	93	188	160	48	135	39	125	185	12	49	3063	FKOCRM090E	FKOCRM090F
110 4"	100	10	165	190	-	107	202	174	48	135	39	125	211	8	56	3481	FKOCRM110E	FKOCRM110F
140 5"	125	10	204	215	-	120	222	194	48	144	39	200	240	8	64	4434	FKOCRM140E	FKOCRM140F
160 6"	150	10	230	242	-	134	235	207	48	144	39	200	268	8	70	5299	FKOCRM160E	FKOCRM160F
225	200	10	280	298	-	161	287	256	65	204	60	200	323	8	71	8945	FKOCRM225E	FKOCRM225F
250	*250	10	335	362	350	210	317	281	88	236	76	250	405	8	114	8945	FKOCRM280E	FKOCRM280F
280	*250	10	335	362	350	210	317	281	88	236	76	250	405	8	114	18727	FKOCRM280E	FKOCRM280F
315	*300	8	390	432	400	245	374	338	88	236	76	250	475	12	114	23004	FKOCRM315E	FKOCRM315F
10"	**250	10	-	362	350	210	317	281	88	236	-	250	405	12	114	18727	FKOACRM810E	FKOACRM810F
12"	**300	8	-	431,8	450	245	374	338	88	236	-	250	475	12	114	23004	FKOACRM812E	FKOACRM812F

*ISO-DIN **ANSI B16.5 cl.150

FKOC/RM LUG ISO-DIN Válvula de mariposa con volante reductor, versión Lug ISO-DIN

d	DN	PN	øΑ	$B_{\!\scriptscriptstyle 2}$	B _s	B ₆	f	G	G ₁	$G_{\!\scriptscriptstyle 2}$	G_3	Н	U	Z	g	Código EPDM	Código FPM
75	65	10	145	80	174	146	M16	48	135	39	125	165	4	46	2908	FKOLCRM075E	FKOLCRM075F
90	80	10	160	93	188	160	M16	48	135	39	125	185	12	49	3418	FKOLCRM090E	FKOLCRM090F
110	100	10	180	107	202	174	M16	48	135	39	125	211	8	56	4333	FKOLCRM110E	FKOLCRM110F
140	125	10	210	120	222	194	M16	48	144	39	200	240	8	64	5432	FKOLCRM140E	FKOLCRM140F
160	150	10	240	134	235	207	M20	48	144	39	200	268	8	70	6907	FKOLCRM160E	FKOLCRM160F
225	200	10	295	161	287	256	M20	65	204	60	200	323	8	71	10591	FKOLCRM225E	FKOLCRM225F



FKOC/RM LUG ANSI Válvula de mariposa con volante reductor versión Lug ANSI

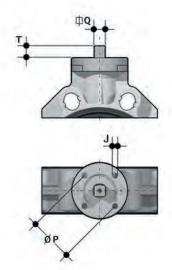
d	DN	PN	øΑ	B ₂	B _s	B ₆	f	G	G ₁	G ₂	G ₃	Н	U	Z	g	Código EPDM	Código FPM
2" 1/2	65	10	139,7	80	174	146	5/8"	48	135	39	125	165	4	46	2908	FKOALCRM212E	FKOALCRM212F
3"	80	10	152,4	93	188	160	5/8"	48	135	39	125	185	12	49	3418	FKOALCRM300E	FKOALCRM300F
4"	100	10	190,5	107	202	174	5/8"	48	135	39	125	211	8	56	4333	FKOALCRM400E	FKOALCRM400F
5"	125	10	215,9	120	222	194	3/4"	48	144	39	200	240	8	64	5432	FKOALCRM500E	FKOALCRM500F
6"	150	10	241,3	134	235	207	3/4"	48	144	39	200	268	8	70	6907	FKOALCRM600E	FKOALCRM600F
8"	200	10	298,4	161	287	256	3/4"	65	204	60	200	323	8	71	10591	FKOALCRM800E	FKOALCRM800F
10"	250	6	362	210	317	281	7/8"	88	236	76	250	405	12	114	23400	FKOALCRM810E	FKOALCRM810F
12"	300	6	431,8	245	374	338	7/8"	88	236	76	250	475	12	114	30400	FKOALCRM812E	FKOALCRM812F

Note: for d 2" 1/2 ÷d 8" NBR primary liner available

ACCESORIOS

FK MS

El kit MS permite instalar en la válvula manual FK/LM una caja de final de carrera con microinterruptores electromecánicos o inductivos, para señalar a distancia la posición de la válvula (abierta-cerrada). El montaje del kit puede realizarse en la válvula aunque ya esté instalada.


DN	$B_{\!\scriptscriptstyle 2}$	$B_{_{\!3}}$	С	C ₁	$D_{\!\scriptscriptstyle{1}}$	Código
40	60	260,5	126,9	103	123,5	LSQKITFK5063
50	70	266,5	126,9	103	123,5	LSQKITFK5063
65	80	273,5	126,9	103	123,5	LSQKIT75160
80	93	287,5	126,9	103	123,5	LSQKIT75160
100	107	301,5	126,9	103	123,5	LSQKIT75160
125	120	321,5	126,9	103	123,5	LSQKIT75160
150	134	334,5	126,9	103	123,5	LSQKIT75160
200	161	385	126,9	103	129,8	LSQKIT225

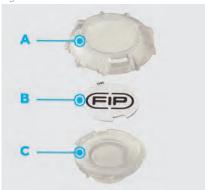
LSE

Paquete de personalización e impresión de etiquetas para la maneta Easyfit compuesto por hojas adhesivas precortadas y por el software para la creación guiada de las etiquetas.

DN	Código FE*FK*
40	LSE040
50	LSE040
65	LSE040
80	LSE040
100	LSE040
125	LSE040
150	LSE040
200	LSE040

BRIDA PARA EL MONTAJE DE ACTUADORES

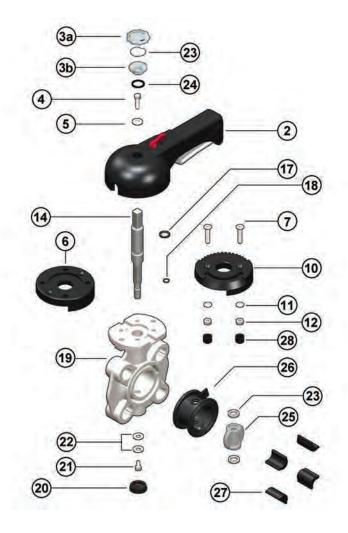
La válvula puede equiparse con actuadores neumáticos y/o eléctricos estándar y volantes reductores para operaciones pesadas, mediante una brida de PP-GR según la norma ISO 5211.


DN	J	Р	Ø	Т	Q
40	7	50	F 05	12	11
50	7	50	F 05	12	11
65	7/9	50/70	F 05/F 07	12	11
80	9	70	F 07	16	14
100	9	70	F 07	16	14
125	9	70	F 07	19	17
150	9	70	F 07	19	17
200	11	102	F 10	24	22
200	11	102	F 10	24	22
250	11/13/17	102/125/140	F 10/ F 12/ F 14	29	27
300	11/13/17	102/125/140	F 10/ F 12/ F 14	29	27

PERSONALIZACIÓN

Fig. 1

Fig. 2



La válvula FK está dotada del sistema de etiquetado Labelling System. Este sistema permite la realización por cuenta propia de etiquetas especiales para introducir en la maneta. De esta manera, se vuelve extremadamente fácil aplicar a las válvulas las marcas de las empresas, números de serie de identificación o indicaciones de servicio como, por ejemplo, la función de la válvula dentro de la instalación o el fluido transportado, pero también información específica para el servicio al cliente, como el nombre del mismo o la fecha y el lugar de instalación. El módulo específico LCE se suministra de serie y está compuesto por un tapón de PVC rígido transparente resistente al agua (A-C) y de una placa portaetiquetas blanca (B), del mismo material, que en una cara lleva la marca FIP (fig. 1) La placa portaetiquetas, introducida en el interior del tapón, puede retirarse y, una vez que se le ha dado la vuelta, puede personalizarse mediante la aplicación de etiquetas impresas con el software suministrado junto con el paquete LSE. Para aplicar la etiqueta a la válvula, proceder de esta manera:

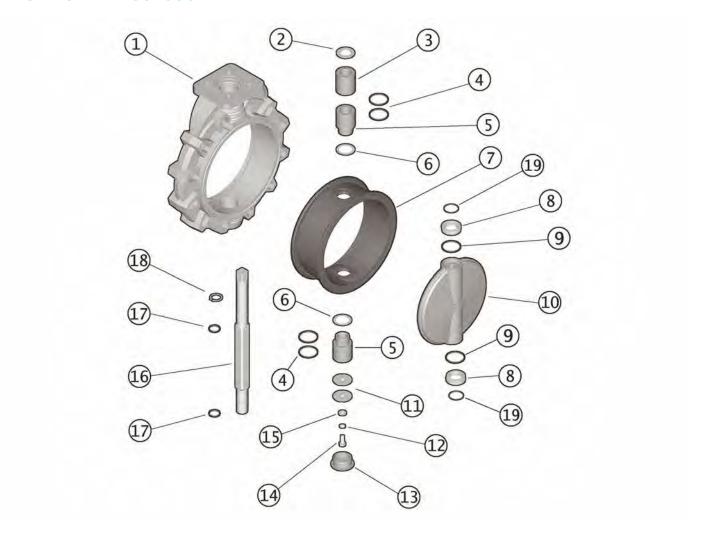
- Retirar la parte superior del tapón transparente (A) girando en el sentido contrario al de las agujas del reloj como indica el rótulo "Open" en el propio tapón y extraerla.
- 2) Extraer la placa portaetiquetas de su alojamiento en la parte inferior del tapón (C).
- 3) Aplicar la etiqueta adhesiva a la placa (B) de manera que queden alineados los perfiles respetando la posición de la lengüeta.
- 4) Volver a introducir la placa portaetiquetas en su alojamiento en la parte inferior del tapón.
- 5) Volver a colocar la parte superior del tapón en su alojamiento girándola en el sentido contrario al de las agujas del reloj; de esta manera, la etiqueta estará protegida de los agentes atmosféricos.

COMPONENTES


DESPIECE DN 40÷65

FALTA TEXTO TRADUCIDO

Entre paréntesis se indica el material del componente y la cantidad suministrada


DESPIECE DN 80÷200

1	Position indicator (PA 1)	10	Plate (PP-GR 1)	20	Protection plug (PE 1)
2	Handle (HIPVC-1)	11	Washer (STAINLESS steel 2)	21	Screw (STAINLESS steel 1)
3a/k	Transparent protection plug (PVC-	12	Nut (STAINLESS steel 2)	22	Washer (STAINLESS steel 2)
	1)	13	Seeger ring (STAINLESS steel 1)	23	Anti-friction ring (PTFE 2)
4	Fastening screw (STAINLESS steel 1)	14	Stem (STAINLESS steel 316 1)	24	Disk O-Ring (EPDM or FKM 2)
5	Washer (STAINLESS steel 1)	15	Bush O-Ring (EPDM or FKM 2)	25	Disk (PVC-C1)
6	Flange (PP-GR 1)	16	Bush (Nylon 1)	26	Liner (EPDM o FKM 1)
7	Screw (STAINLESS steel 2)	17	Stem O-Ring (EPDM or FKM 1)	27	Inserts (ABS 4-8)
8	Tag holder (PVC-U 1)	18	Stem O-Ring (EPDM or FKM 1)	28	Plug (PE 2)
9	O-Ring (NBR 1)	19	Body (PP-GR 1)		_

The component material and quantity supplied are indicated in the parentheses.

DESPIECE DN 250÷300

- 1 Body (PP-GR 1)
- 2 Washer (STAINLESS steel 1)
- **3** Bush (PP 1)
- 4 Bush O-Ring (EPDM or FKM 4)
- 5 Bush (PP 2)
- **6** Washer (PTFE 2)
- 7 Liner (EPDM o FKM 1)

- 8 Anti-friction ring (PTFE 2)
- 9 Disk O-Ring (EPDM or FKM 2)
- **10** Disk (PVC-C-1)
- 11 Washer (STAINLESS steel 2)
- **12** Washer (STAINLESS steel 1)
- 13 Protection plug (PE 1)
- 14 Screw (STAINLESS steel 1)
- 15 Washer (STAINLESS steel 1)
- 16 Stem (STAINLESS steel 1)
- 17 Stem O-Ring (EPDM or FKM 2)
- 18 Seeger ring (STAINLESS steel 1)
- 19 O-Ring (EPDM or FKM 2)

The component material and quantity supplied are indicated in the parentheses.

DESMONTAJE

DN 40÷200

- 1) Extraer el módulo LCE compuesto del tapón de PVC rígido transparente (3a-3b) y de la placa portaetiquetas blanca (8) y desatornillar el tornillo con la arandela (3) (fig.3).
- 2) Retirar la maneta (2).
- 3) Retirar los tornillos (7) y el platillo (10) del cuerpo (19).
- 4) Quitar el capuchón de protección (20) y el tornillo (21) con la arandela (22).
- 5) Extraer el eje (14) y el disco (25).
- 6) Extraer los anillos antifricción (23) y (solo DN 65÷200) las juntas tóricas (24).
- 7) Sacar la junta primaria (26) del cuerpo (19).
- 8) Extraer el anillo Seeger (13) y (solo DN 65÷200) el casquillo guía (16).
- 9) Extraer (solo DN 65÷200) las juntas tóricas (15) y (17, 18).

DN 250÷300

- 1) Quitar el capuchón de protección (13) y desenroscar el tornillo (14) con las arandelas (11-15).
- 2) Extraer el eje (16) y el disco (10).
- 3) Extraer la junta (7) del cuerpo (1).
- 4) Extraer el anillo Seeger (18) y los casquillos guía (5-3) con la arandela (2).
- 5) Extraer el casquillo inferior (5).
- 6) Extraer las juntas tóricas (4) y (17).

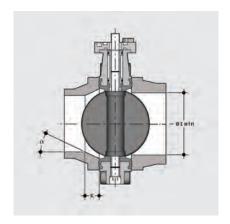
MONTAJE

DN 40÷200

- 1) Calzar la junta primaria (26) en el cuerpo (19).
- 2) Introducir las juntas tóricas (17) y (18) en el eje (14).
- 3) Introducir las juntas tóricas (15) en el casquillo guía (16) y el casquillo en el eje; bloquear el casquillo mediante el anillo Seeger (13).
- Colocar las juntas tóricas (24) y, a continuación, los anillos antifricción (23) y el disco (25) y el disco en el interior del cuerpo, después de haber lubricado la junta primaria (26).
- 5) Introducir el eje pasante (14) a través del cuerpo (19) y el disco (25).
- 6) Atornillar el tornillo (21) con la arandela (22) e introducir el capuchón de protección (20).
- 7) Posicionar el platillo (10) en el cuerpo (19), y atornillar los tornillos (7).
- 8) Colocar la maneta (2) en el eje (14).
- 9) Atornillar el tornillo (4) con la arandela (5) y volver a colocar el módulo LCE compuesto por el tapón de PVC rígido transparente (3a-3b) y por la placa portaetiquetas blanca (8).

DN 250÷300

- 1) Calzar la junta primaria (7) en el cuerpo (1).
- 2) Introducir las juntas tóricas (4) y la arandela (6) en los casquillos (5).
- 3) Introducir las juntas tóricas (17) en el eje (16); introducir en el eje el casquillo superior (5), el casquillo (3), la arandela (2) y fijarlos con el anillo Seeger (18).
- 4) Introducir las juntas tóricas (19-9) en los anillos antifricción (8).
- 5) Posicionar las arandelas (8) en los alojamientos del disco (10), y el disco en el interior del cuerpo (1) después de haber lubricado la junta primaria (7).
- 6) Introducir el eje (16) pasante a través de cuerpo y disco.
- 7) Posicionar desde abajo el casquillo inferior (5).
- 8) Atornillar el tornillo (14) con las arandelas (11-15) y colocar el capuchón de protección (13).



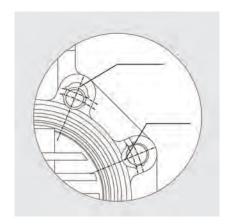
Nota: en las operaciones de montaje, se aconseja lubricar las juntas de goma. Para ello, se recuerda que no es adecuado el uso de aceites minerales, que resultan agresivos para la junta EPDM.

INSTALACIÓN

UNIONES

Antes de proceder a la instalación de los accesorios de conexión, verificar que la luz libre de paso de los propios accesorios permita la correcta apertura del disco de la válvula.

Además, controlar la cuota máxima de acoplamiento para la junta primaria. Antes de efectuar la instalación de la válvula FK es conveniente verificar que el diámetro de paso del portabridas permita la correcta apertura del disco.


DN	l min.
40	25
50	28
65	47
80	64 84
100	84
125	108
150	134
200	187
250	225
300	280

Para la instalación de portabridas PP-PE, para soldadura a tope corta o electrofusión/a tope larga, verificar los acoplamientos válvula-portabridas-brida y las cuotas K - a de achaflanado donde sea necesario según las diferentes SDR en la tabla siguiente.

	d	DN	50 40	63 50	75 65	90	110	125	140 125				225 200	250 250	280 250	
	50	40														
	63	50				1 =							-			
	75	65	1 = [-	1						-
	90	80													-	
×	110	100														
Ĭ.	140	125								I.		<u></u>				
	160	150														
	225	200		-										li e		
	280	250														
	315	300	• =								L X I					
		17/17,6					7				T	k=26,5 a=20°		k=15,7 a=25°		k=13,3 a=25°
SDR		11								k=35 a=20°		k=35 a=25°	k=40 a=15°	k=32,5 a=25°	k=35 a=25°	k=34,5 a=25°
		7,4				k=10 a=35°	k=15 a=35°	4	k=20 a=30°	k=35 a=20°	k=15 a=35°	k=40 a=20°	k=35 a=30°	k=55 a=30°	k=35 a=30°	k=65 a=30°

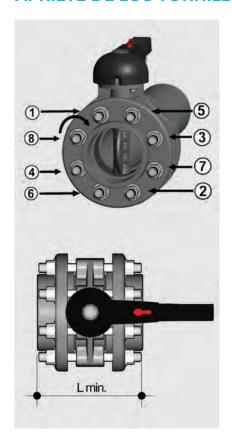
Portabridas corto/largo EN ISO 15494 y DIN 16962/16963 y brida

POSICIONAMIENTO DE LAS LUNETAS

Introducir las lunetas en los agujeros según la posición indicada en la tabla, por el lado correspondiente al rótulo con D y DN para facilitar la introducción de los tornillos y el acoplamiento con las bridas (DN 40 ÷ 200). Las lunetas de autocentrado deben introducirse en las correspondientes guías de los agujeros en el cuerpo válvula lado rótulos con los rótulos hacia arriba, y deben ser posicionadas según el tipo de perforación de las bridas como se indica en la tabla siguiente:

DN	DIN 2501 PN6, EN1092-1, BS4504 PN6, DIN 8063 PN6	DIN 2501 PN10/16, EN1092-1, BS 4504 PN10/16, DIN 8063 PN10/16, EN ISO 15493	BS 10 table A-D-E Spec D-E	BS 1560 cl.150 ANSI B16.5 cl.150*	JIS B 2220 K5
40	Pos.1	Pos. 2	Pos. 1	Pos. 1	Pos. 1
50	Pos.1	Pos. 2	Pos. 1	-	N/A
65	Pos.1	Pos. 2	Pos. 1	Pos. 2	Pos. 1
80	Pos.1	Pos. 2	Pos. 1	Pos. 2	Pos. 1
100	Pos.1	Pos. 2	Pos. 1	Pos. 2	Pos. 1
125	Pos.1	Pos. 2	Pos. 1	Pos. 2	Pos. 1
150	Pos.1	Pos. 2	Pos. 1	Pos. 2	Pos. 1
200	Pos.1	PN 10 Pos. 2	Pos. 1	Pos. 2	Pos. 1

*DN 50 sin insertos


**DN 40, 50, 125 sin insertos

POSICIONAMIENTO DE LA VÁLVULA

Posicionar la válvula entre dos manguitos portabridas con bridas prestando atención a respetar las cuotas de instalación Z. Se aconseja instalar siempre la válvula de disco parcialmente cerrada (no debe sobresalir del cuerpo) y evitar desalineaciones de las bridas, causa de posibles pérdidas hacia el exterior. Se aconseja respetar las siguientes precauciones:

- Transporte de fluidos no limpios: posicionamiento con el eje de maniobra inclinado en un ángulo de 45° respecto al plano de apoyo de la tubería.
- Transporte de fluidos con sedimentos: posicionar la válvula con el eje de maniobra paralelo al plano de apoyo de la tubería.
- Transporte de fluidos limpios: posicionar la válvula con el eje de maniobra perpendicular al plano de apoyo de la tubería.

APRIETE DE LOS TORNILLOS

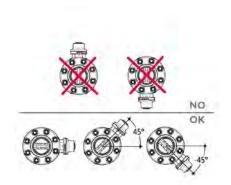
Antes de efectuar el apriete de los tornillos, se aconseja abrir el disco para no dañar la junta. Apretar de forma homogénea los tornillos de conexión siguiendo el orden numérico indicado en la figura, según el par nominal indicado en la tabla. No es necesario forzar el apriete de los tornillos para obtener una perfecta estanqueidad hidráulica. Un apriete excesivo perjudicaría la contención de los pares de maniobra de la válvula.

DN	L min.	*Nm
40	M16 x 150	9
50	M16 x 150	12
65	M16 x 170	15
80	M16 x 180	18
100	M16 x 180	20
125	M16 x 210	35
150	M20 x 240	40
200	M20 x 260	55
250	M20 x 310	70
300	M20 x 340	70

*Momentos de apriete nominal de la tornillería para uniones embridadas con bridas locas.

Valores necesarios para obtener la estanqueidad en la prueba hidráulica (1,5xPN a 20°C) (tornillería

nueva o lubricada)


BLOQUEO MANETA

Gracias a la maneta multifunción y al botón de maniobra rojo colocado en la palanca, es posible efectuar una maniobra de 0° - 90° y una maniobra graduada mediante las 10 posiciones intermedias y un bloqueo de retención: la maneta puede bloquearse en cualquiera de las 10 posiciones simplemente utilizando el botón de maniobra Free-Lock. ES posible, además, instalar un candado en la maneta para evitar que la instalación sufra manipulaciones.

La válvula es bidireccional y puede instalarse en cualquier posición. Además, puede montarse al final de la línea o en un depósito.

Asegurarse de que las válvulas montadas en la instalación estén sujetas adecuadamente en base a su peso.

Evitar maniobras bruscas de cierre y proteger la válvula contra maniobras accidentales. Para ello, se aconseja prever la instalación de reductores de maniobra, que pueden suministrarse bajo pedido.

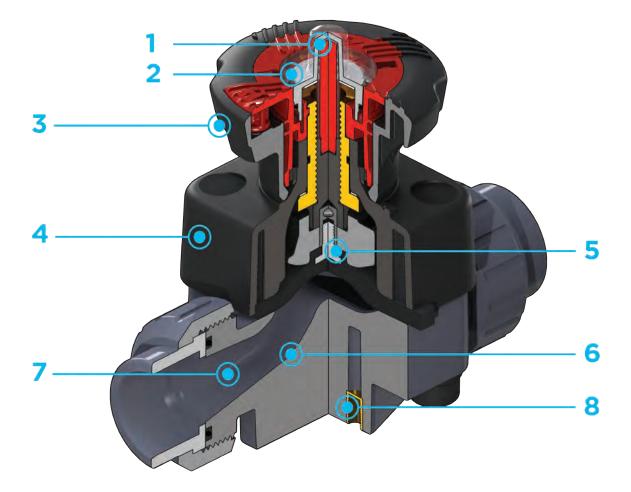
En caso de transporte de fluidos no limpios o con sedimento, instalar la válvula inclinándola como se indica en la figura.

DK DN 15÷65

PVC-C

Válvula de membrana de 2 vías DIALOCK®

DK **DN 15÷65**


La nueva válvula de membrana DK DIALOCK® está diseñada especialmente para la regulación y la interrupción de fluidos abrasivos o que contienen impurezas. La nueva geometría interna del cuerpo optimiza la eficiencia fluidodinámica aumentando considerablemente el caudal y garantiza una óptima linealidad de la curva de regulación. La DK presenta medidas y pesos efectivamente reducidos. El innovador volante está dotado con un mecanismo patentado de bloqueo de la maniobra, inmediato y ergonómico, que permite bloquear cualquier posición de regulación establecida.

VÁLVULA DE MEMBRANA DE 2 VÍAS DIALOCK®

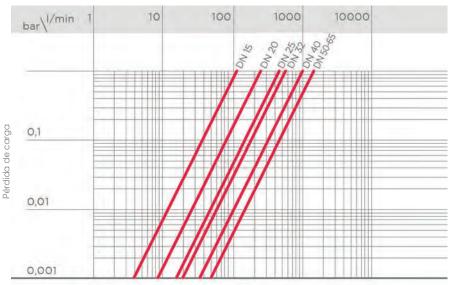
- Sistema de unión encolado, roscado y embridado.
- Diseño fluidodinámico optimizado: máximo rendimiento de caudal gracias a la eficiencia fluidodinámica optimizada que caracteriza la nueva geometría interna del cuerpo.
- Órganos de maniobra internos de metal, aislados del fluido y del ambiente exterior
- Modularidad de la gama: sólo 2 volantes, 4 membranas y tapones para 7 medidas de válvula diferentes.
- Volante no saliente que mantiene siempre la misma altura durante la rotación, dotado de indicador óptico graduado protegido por capuchón de PVC transparente con junta tórica de estanqueidad.
- Tornillos de fijación del tapón de acero INOX protegidos del ambiente exterior por tapones de PE. Ausencia de partes metálicas expuestas al ambiente exterior para prevenir todo riesgo de corrosión.
- Sistema de estanqueidad CDSA (Circular Diaphragm Sealing Area) que, gracias a la distribución uniforme de la presión del obturador sobre la membrana estanca, ofrece las siguientes ventajas:
 - reducción del par de apriete de los tornillos que fijan el cuerpo de la válvula al actuador.
 - menor estrés mecánico para todos los componentes de la válvula (actuador, cuerpo y membrana).
 - facilidad de limpieza de las zonas internas de la válvula.
 - minimización del riesgo de acumulación de depósitos, contaminación o daño de la membrana a causa de fenómenos de cristalización.
 - reducción del par de maniobra.

Especificaciones técnicas					
Construcción	Válvula de membrana con cuerpo de caudal maximizado y volante bloqueable DlaloCk®				
gama dimensional	DN 15 ÷ 65				
Presión nominal	PN 10 con agua a 20° C				
Rango de temperatura	0 °C ÷ 100 °C				
Estándares de unión	Encolado: EN ISO 15493, ASTM F 439. Can be coupled to pipes according to EN ISO 15493, ASTM F 441.				
	Roscado: ISO 228-1, DIN 2999.				
	Embridado: ISO 7005-1, EN ISO 15493, EN 558-1, DIN 2501, ANSI B.16.5 cl.				
Referencias normativas	Criterios constructivos: EN ISO 16138, EN ISO 15493				
	Métodos y requisitos de las pruebas: ISO 9393				
	Criterios de instalación: DVS 2204, DVS 2221, UNI 11242				
Material de la válvula	Cuerpo: PVC-C				
	Tapón y volante: PP-GR				
	Capuchón indicador de posición: PVC				
Material membrana	EPDM, FPM, PTFE (bajo pedido NBR)				
Opciones de comando	Mando manual; actuador neumático				

- Indicador óptico de posición graduado de alta visibilidad y protegido por un tapón transparente con junta tórica de estanqueidad.
- Preparada para su personalización mediante placa de identificación. La posibilidad de personalización permite identificar la válvula en la instalación en función de necesidades específicas.
- Sistema DIALOCK®: innovador volante de mando dotado de un mecanismo de bloqueo de la maniobra, inmediato y ergonómico, que permita ajustar y bloquear la válvula en más de 300 posiciones.

- Volante y tapón de PP-GR de alta resistencia mecánica y química, garantiza protección total para aislar todas las partes metálicas internas de los agentes externos.
- Conexión con pin flotante entre tornillo de mando y membrana para aumentar su estanqueidad y duración evitando cargas concentradas.
- 6 Nuevo diseño interno del cuerpo de la válvula: coeficiente de flujo notablemente aumentado y bajas pérdidas de carga. la eficiencia lograda también ha permitido reducir el volumen y el peso de la válvula.
- Linealidad de regulación: los perfiles internos de la válvula permiten mejorar notablemente la curva característica de la válvula y lograr una regulación particularmente sensible y precisa en toda la carrera del obturador.
- Soporte de fijación de la válvula integrado en el cuerpo dotado de insertos roscados de metal para una instalación rápida y sencilla en panel o en pared con la placa de montaje PMDK (suministrada como accesorio).

DATOS TÉCNICOS

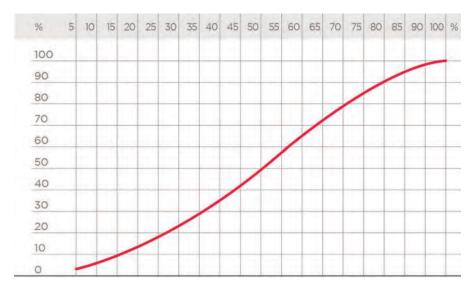

VARIACIÓN DE LA PRESIÓN EN FUNCIÓN DE LA TEMPERATURA

Para agua o fluidos no peligrosos para los cuales el material está clasificado como QUÍMICAMENTE RESISTENTE. En otros casos es necesaria una disminución adecuada de la presión nominal PN (25 años con factor de seguridad).

Temperatura de funcionamiento

DIAGRAMA DE PÉRDIDA DE CARGA

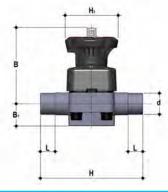
Caudal


COEFICIENTE DE FLUJO K_v100

Por coeficiente de flujo k_ν 100 se entiende el caudal Q en litros por minuto de agua a 20 °C que genera una pérdida de carga Δp = 1 bar para una determinada posición de la válvula. los valores k_ν 100 indicados en la tabla son para la válvula completamente abierta.

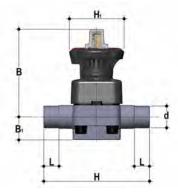
DN	15	20	25	32	40	50	65
k,100 i/	112	261	445	550	1087	1648	1600
v min							

DIAGRAMA DEL COEFICIENTE DE FLUJO RELATIVO


Por coeficiente de flujo relativo se entiende la evolución del caudal en función de la carrera de apertura de la válvula.

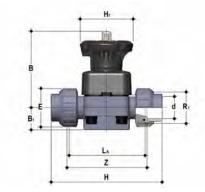
Porcentaje de apertura de válvula

Los datos de este catálogo se suministran de buena fe. FIP no asume ninguna responsabilidad por los datos no derivados directamente de normas internacionales. FIP se reserva el derecho de aportar cualquier modificación. La instalación y el mantenimiento del producto deben ser realizados por personal cualificado.


DIMENSIONES

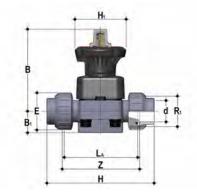
DKDC

Válvula de membrana $\mathsf{DIALOCK}^{\scriptscriptstyle{(0)}}$ con conexiones macho para encolar, serie métrica


d	DN	PN		B ₁	Н	H,		g	Código EPDM	Código FPM	PTFE Código
20	15	10	102	25	124	80	16	466	DKDC020E	DKDC020F	DKDC020P
25	20	10	105	30	144	80	19	491	DKDC025E	DKDC025F	DKDC025P
32	25	10	114	33	154	80	22	696	DKDC032E	DKDC032F	DKDC032P
40	32	10	119	30	174	80	26	743	DKDC040E	DKDC040F	DKDC040P
50	40	10	149	35	194	120	31	1574	DKDC050E	DKDC050F	DKDC050P
63	50	10	172	46	224	120	38	2310	DKDC063E	DKDC063F	DKDC063P
75	65	10	172	46	284	120	44	2430	DKDC075E	DKDC075F	DKDC075P

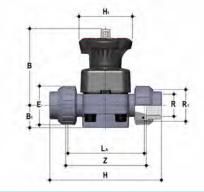
DKLDC

Válvula de membrana DIALOCK $^{\circ}$ con limitador de carrera y conexiones macho para encolar, serie métrica


d	DN	PN	В	B ₁	Н	H,	L	g	Código EPDM	Código FPM	PTFE Código
20	15	10	115	25	124	80	16	496	DKLDC020E	DKLDC020F	DKLDC020P
25	20	10	118	30	144	80	19	521	DKLDC025E	DKLDC025F	DKLDC025P
32	25	10	127	33	154	80	22	726	DKLDC032E	DKLDC032F	DKLDC032P
40	32	10	132	30	174	80	26	773	DKLDC040E	DKLDC040F	DKLDC040P
50	40	10	175	35	194	120	31	1634	DKLDC050E	DKLDC050F	DKLDC050P
63	50	10	200	46	224	120	38	2370	DKLDC063E	DKLDC063F	DKLDC063P
75	65	10	200	46	284	120	44	2490	DKLDC075E	DKLDC075F	DKLDC075P

DKUIC

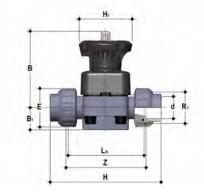
Válvula de membrana DIALOCK $^{\scriptscriptstyle{(0)}}$ con enlaces hembra para encolar


d	DN	PN	В	B ₁	Е	Н	H,	La	R ₁	Z	g	Código EPDM	Código FPM	PTFE Código
20	15	10	102	25	41	129	80	90	1"	100	509	DKUIC020E	DKUIC020F	DKUIC020P
25	20	10	105	30	50	154	80	108	1"1/4	116	576	DKUIC025E	DKUIC025F	DKUIC025P
32	25	10	114	33	58	168	80	116	1"1/2	124	812	DKUIC032E	DKUIC032F	DKUIC032P
40	32	10	119	30	72	192	80	134	2"	140	945	DKUIC040E	DKUIC040F	DKUIC040P
50	40	10	149	35	79	222	120	154	2"1/4	160	1814	DKUIC050E	DKUIC050F	DKUIC050P
63	50	10	172	46	98	266	120	184	2"3/4	190	2752	DKUIC063E	DKUIC063F	DKUIC063P

DKLUIC

Válvula de membrana DIALOCK® con limitador de carrera y con enlaces hembra para encolar

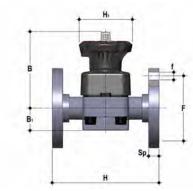
d	DN	PN	В	B ₁	Е	Н	H ₁	La	R ₁	Z	g	Código EPDM	Código FPM	PTFE Código
20	15	10	115	25	41	129	80	90	1"	100	539	DKLUIC020E	DKLUIC020F	DKLUIC020P
25	20	10	118	30	50	154	80	108	1"1/4	116	606	DKLUIC025E	DKLUIC025F	DKLUIC025P
32	25	10	127	33	58	168	80	116	1"1/2	124	842	DKLUIC032E	DKLUIC032F	DKLUIC032P
40	32	10	132	30	72	192	80	134	2"	140	975	DKLUIC040E	DKLUIC040F	DKLUIC040P
50	40	10	175	35	79	222	120	154	2"1/4	160	1874	DKLUIC050E	DKLUIC050F	DKLUIC050P
63	50	10	200	46	98	266	120	184	2"3/4	190	2812	DKLUIC063E	DKLUIC063F	DKLUIC063P



DKUFC

Válvula de membrana $\mathsf{DIALOCK}^{@}$ con enlaces hembra, rosca cilíndrica gas

R	DN	PN	В	B ₁	Е	Н	H,	La	R ₁	Z	g	Código EPDM	Código FPM	PTFE Código
1/2"	15	10	102	25	41	131	80	90	1"	97	509	DKUFC012E	DKUFC012F	DKUFC012P
3/4"	20	10	105	30	50	151	80	108	1"1/4	118	576	DKUFC034E	DKUFC034F	DKUFC034P
1"	25	10	114	33	58	165	80	116	1"1/2	127	812	DKUFC100E	DKUFC100F	DKUFC100P
1"1/4	32	10	119	30	72	188	80	134	2"	145	945	DKUFC114E	DKUFC114F	DKUFC114P
1"1/2	40	10	149	35	79	208	120	154	2"1/2	165	1814	DKUFC112E	DKUFC112F	DKUFC112P
2"	50	10	172	46	98	246	120	184	2"3/4	195	2752	DKUFC200E	DKUFC200F	DKUFC200P


DKLUFC version available on request

DKUAC Válvula de membrana DIALOCK® con enlaces hembra para encolar, serie ASTM

d	DN	PN	В	B ₁	Е	Н	H,	La	R ₁	Z	g	Código EPDM	Código FPM	PTFE Código
1/2"	15	10	102	25	41	143	80	90	1"	98	509	DKUAC012E	DKUAC012F	DKUAC012P
3/4"	20	10	105	30	50	167	80	108	1"1/4	115	576	DKUAC034E	DKUAC034F	DKUAC034P
1"	25	10	114	33	58	180	80	116	1"1/2	122	812	DKUAC100E	DKUAC100F	DKUAC100P
1"1/4	32	10	119	30	72	208	80	134	2"	144	945	DKUAC114E	DKUAC114F	DKUAC114P
1"1/2	40	10	149	35	79	234	120	154	2"1/2	164	1814	DKUAC112E	DKUAC112F	DKUAC112P
2"	50	10	172	46	98	272	120	184	2"3/4	195	2752	DKUAC200E	DKUAC200F	DKUAC200P

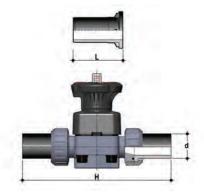
DKLUAC version available on request

DKOC

Válvula de membrana DIALOCK® con bridas fijas agujeros PN10/16. Diámetro según norma EN 558-1

d	DN	PN	В	B ₁	f	F	Н	H,	Sp	U	g	Código EPDM	Código FPM	PTFE Código
20	15	10	102	25	65	14	130	80	13,5	4	962	DKOC020E	DKOC020F	DKOC020P
25	20	10	105	30	75	14	150	80	13,5	4	1038	DKOC025E	DKOC025F	DKOC025P
32	25	10	114	33	85	14	160	80	13,5	4	1122	DKOC032E	DKOC032F	DKOC032P
40	32	10	119	30	100	18	180	80	14	4	1364	DKOC040E	DKOC040F	DKOC040P
50	40	10	149	35	110	18	200	120	16	4	2299	DKOC050E	DKOC050F	DKOC050P
63	50	10	172	46	125	18	230	120	16	4	3200	DKOC063E	DKOC063F	DKOC063P
75	65	10	172	46	145	18	290	120	21	4	3873	DKOC075E	DKOC075F	DKOC075P

DKLOC version available on request



DKOAC

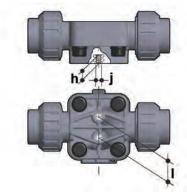
Válvula de membrana DIALOCK $^{\circ}$ con bridas fijas agujeros ANSI B16.5 cl. 150 #FF


d	DN	PN					H	H,	Sp	U	g	Código EPDM	Código FPM	PTFE Código
1/2"	15	10	102	25	60.3	14	108	80	13,5	4	962	DKOAC012E	DKOAC012F	DKOAC012P
3/4"	20	10	105	30	70	15.7	120	80	13,5	4	1038	DKOAC034E	DKOAC034F	DKOAC034P
1"	25	10	114	33	80	15.7	131	80	13,5	4	1122	DKOAC100E	DKOAC100F	DKOAC100P
1" 1/4	32	10	119	30	89	15.7	162	80	14	4	1364	DKOAC114E	DKOAC114F	DKOAC114P
1" 1/2	40	10	149	35	99	15.7	180	120	16	4	2299	DKOAC112E	DKOAC112F	DKOAC112P
2"	50	10	172	46	121	19	210	120	16	4	3200	DKOAC200E	DKOAC200F	DKOAC200P
2" 1/2	65	10	172	46	140	19	250	120	21	4	3873	DKOAC212E	DKOAC212F	DKOAC212P

DKLOAC version available on request For installation prior to october 2017 please contact Fip Technical Support

Q/BBE-L CONECTORES DE PE100 largos, para soldaduras con manguitos electrosoldables o a tope

d	DN	PN		H	SDR	Código
20	15	16	95	280	11	QBBEL11020
25	20	16	95	298	11	QBBEL11025
32	25	16	95	306	11	QBBEL11032
40	32	16	95	324	11	QBBEL11040
50	40	16	95	344	11	QBBEL11050
63	50	16	95	374	11	QBBEL11063


PMDK

Placa de montaje mural

d	DN			С	D			Código
20	15	65	97	81	33	5,5	11	PMDK1
25	20	65	97	81	33	5,5	11	PMDK1
32	25	65	97	81	33	5,5	11	PMDK1
40	32	65	97	81	33	5,5	11	PMDK2
50	40	65	144	130	33	6,5	11	PMDK2
63	50	65	144	130	33	6,5	11	PMDK2
75	65	65	144	130	33	6,5	11	PMDK2

EMBRIDADO Y FIJACIÓN

Todas las válvulas, tanto manuales como motorizadas, necesitan, en muchas aplicaciones, ser fijadas adecuadamente.

La serie de válvulas DK está dotada con soportes integrados que permiten un anclaje directo en el cuerpo de la válvula sin necesidad de otros componentes. Para la instalación en la pared o en un panel es posible utilizar la correspondiente placa de montaje PMDK, suministrada como accesorio, que debe fijarse antes a la válvula

La placa PMKD sirve también para alinear la válvula DK con las abrazaderas de tubería FIP tipo ZIKM.

d	DN	h	1	j
20	15	10	25	M6
25	20	10	25	M6
32	25	10	25	M6
40	32	10	25	M6
50	40	13	44,5	M8
63	50	13	44,5	M8
75	65	13	44,5	M8

PERSONALIZACIÓN

Fig.1

Fig. 2

_. _

La válvula DK DN 15÷65 DIALOCK® está preparada para personalizarse con una placa de identificación de PVC blanco.

La placa (B), situada en el capuchón de protección transparente (A), se puede quitar y, dándole la vuelta, se puede utilizar para indicar en las válvulas números de serie de identificación o indicaciones de servicio como, por ejemplo, la función de la válvula dentro de la instalación o el fluido transportado, pero también información específica para el servicio al cliente, como su nombre o la fecha y el lugar en que se ha efectuado la

instalación. El capuchón de protección transparente resistente al agua, lleva una junta tórica que protege del deterioro la placa personalizada.

Para acceder a la placa de identificación asegurarse de que el volante esté en posición de desbloqueo y proceder de la siguiente manera:

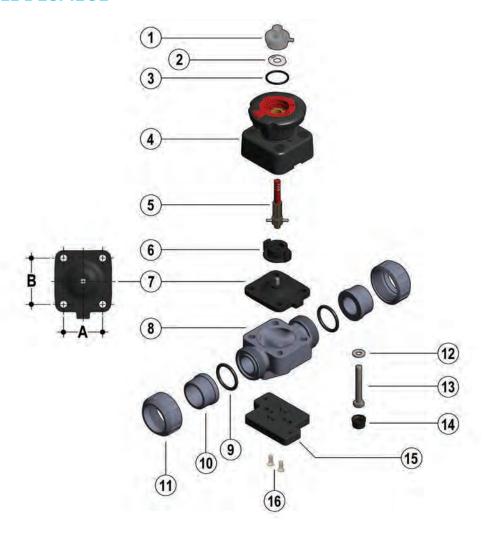

- 1) Girar en sentido antihorario el capuchón de protección transparente hasta el tope (fig. 1) y extraerlo tirando hacia arriba; para facilitar la operación se puede introducir un destornillador en la ranura (C) (fig. 2).
- 2) Sacar la placa del capuchón de protección transparente y realizar la personalización (fig. 3).
- 3) Realizar el montaje sin dejar que la junta tórica del capuchón se salga del alojamiento (fig. 4).

Fig. 4

COMPONENTES

VISTA DEL DESPIECE

DN	15	20	25	32	40	50	65
А	40	40	46	46	65	78	78
В	44	44	54	54	70	82	82

- Transparent protection cap (PVC-1)*
- 2 Customisation plate (PVC-U 1)
- **3** O-Ring (EPDM 1)
- Operating mechanism (PP-GR / PVDF 1)
- Threaded stem Indicator (STAINLESS steel 1)
- Compressor (PA-GR IXEF® 1)
- Diaphragm seal (EPDM, FKM, PTFE 1)*
- 8 Valve body (PVC-C 1)*
- 9 Socket seal O-Ring (EPDM-FKM 2)*
- 10 End connector (PVC-C-2)*
- 11 Union nut (PVC-C-2)*

- 2 Washer (STAINLESS steel 4)
- 13 Bolt (STAINLESS steel 4)
- 14 Protection plug (PE 4)
- 15 Distance plate (PP-GR 1)**
 - Screw (STAINLESS steel 2)**

Entre paréntesis se indica el material del componente y la cantidad suministrada

^{*}Repuestos

^{**}Accesorios

DESMONTAJE

- 1) Aislar la válvula de la línea (quitar la presión y vaciar la tubería).
- 2) Desbloquear, si es necesario, el voCódigolante de maniobra presionando hacia abajo (fig.5) y abrir completamente la válvula girándolo en sentido antiCódigohorario.
- 3) Desenroscar completamente las tuercas (11) y extraer lateralmente la válvula.
- 4) Quitar los tapones de protección (14) y desenroscar los pernos (13) con las arandelas (12).
- 5) Separar el cuerpo de la válvula (8) del grupo de maniobra (4).
- 6) Girar el volante de maniobra hacia la derecha hasta liberar el eje roscado (5), el compresor (6) y la membrana (7).
- 7) Destornillar la membrana (7) y quitar el obturador (6).

MONTAJE

- 1) Colocar el compresor (6) sobre el eje roscado (5) alineándolo correctaCódigomente con el perno de referencia del eje.
- 2) Atornillar la membrana (7) al eje rosCódigocado (5)
- 3) Lubricar el eje roscado (5) y coloCódigocarlo en el grupo de maniobra (4) y girarlo en sentido antihorario hasta enroscar completamente el eje (5). Prestar atención para que el comCódigopresor (6) y la membrana queden correctamente alineados con los aloCódigojamientos en el grupo de maniobra (4) (fig. 7).
- 4) Montar el grupo de maniobra (4) en el cuerpo de la válvula (8) y enroscar los tornillos (13) con las arandelas (12).
- 5) Apretar los tornillos (13) de manera equilibrada (en cruz) respetando los pares de apriete sugeridos en la hoja de instrucciones.
- 6) Montar los tapones de protección (14)
- 7) Poner el cuerpo de la válvula entre los manguitos (10) y apretar las tuerCódigocas (11) prestando atención para que las juntas tóricas de estanqueidad (9) no sobresalgan de sus alojamientos.
- 8) Bloquear, si es necesario, el volante de maniobra empuñándolo y tirando hacia arriba (fig. 6).

Nota: en las operaciones de montaje, se aconseja lubricar el eje roscado. Para ello, se recuerda que no es adecuado el uso de aceites minerales, que resultan agresivos para la junta EPDM.

Fig. 7

INSTALACIÓN

Para la instalación seguir atentamente estas instrucciones: (instrucciones para las versiones con extremos embridados). La válvula puede instalarse en cualquier posición y dirección.

- 1) Verificar que las tuberías a las que se debe conectar la válvula estén alineadas para evitar esfuerzos mecánicos sobre las conexiones roscadas de la misma.
- 2) Proceder con el desenroscado de las tuercas (11) y con la introducción de las mismas en los tramos de tubo.
- 3) Proceder al encolado o soldadura o enroscado de los manguitos (10) en los traCódigomos de tubo.
- 4) Poner el cuerpo de la válvula entre los manguitos prestando atención para que las juntas tóricas de estanqueidad (9) no sobresalgan de sus alojamientos.
- 5) Apretar completamente las tuercas (11).
- 6) Si fuera necesario, sujetar la tubería mediante abrazaderas de tubería FIP o mediante el soporte integrado en la válvula (ver el apartado "Embridado y fijación").

Nota: Antes de poner la válvula en servicio, verificar el apriete correcto de los tornillos del cuerpo de la válvula (13) según los pares sugeridos.

BLOQUEO DE LA MANIOBRA

La válvula DK tiene sistema de bloqueo de volante DIALOCK® para inhibir la maniobra de la válvula.

El sistema puede utilizarse simplemente levantando el volante una vez alcanzada la posición deseada (fia. 8).

Para desbloquear la maniobra es suficiente dejar el volante en la posición anterior presionando hacia abajo (fig. 6).

Cuando el sistema está en posición de bloqueo, es posible instalar un candado para evitar que la instalación sufra manipulaciones (fig. 9).

LIMITADOR DE CARRERA

La válvula de membrana en la versión DKL incorpora un sistema de regulación de la carrera del volante que permite modificar los caudales máximo y mínimo de la válvula y proteger la membrana de una compresión excesiva en la fase de cierre. El sistema permite modificar la carrera de la válvula actuando sobre dos registros independientes que determinan los topes mecánicos de la válvula en cierre y en apertura. La válvula se vende con los limitadores de carrera posicionados de modo tal que la carrera no se ve limitada ni en cierre ni en apertura.

Para la regulación hay que sacar el capuchón de protección transparente (A) como se indicó anteriormente (ver el capítulo "Personalización").

Regulación del limitador en cierre. Caudal mínimo o válvula cerrada.

- 1) Girar el volante hacia la derecha hasta alcanzar el caudal mínimo deseado o la posición de cierre.
- 2) Enroscar completamente la tuerca (D) hasta el tope y bloquearla en esta posición apretando la contratuerca (E). Si se deseara excluir la función de limitación de caCódigorrera en cierre, desenroscar completamente las tuercas (D y E). De esta manera la válvula alcanza el punto de cierre completo.
- 3) Poner el capuchón de protección transparente prestando atención para que la junta tórica de estanqueidad no sobresalga de su alojamiento.

Regulación del limitador en apertura. Caudal máximo.

- 1) Girar el volante en sentido antihorario hasta alcanzar el caudal máximo deseado.
- 2) Girar en sentido antihorario el pomo (F) hasta el tope. La placa muestra el sentido de rotación de la rueda para obtener un menor o mayor caudal máximo. Si no es necesario limitar la carrera de apertura, girar varias veces el pomo (F) en sentido horario. De esta manera la válvula alcanza el punto de apertura completo. 3) Poner el capuchón de protección transparente prestando atención para que la junta tórica de estanqueidad no sobresalga de su alojamiento.

VM DN 80÷100

PVC-C

Válvula de membrana

VM **DN 80÷100**

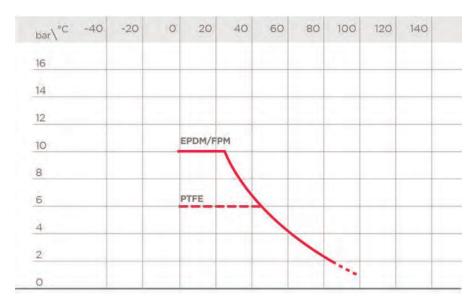

La VM es particularmente adecuada para la regulación e interceptación de fluidos abrasivos o que contienen impurezas.

El mando de volante y la junta de membrana permiten una regulación precisa y eficaz y reducen al mínimo los riesgos de golpe de ariete.

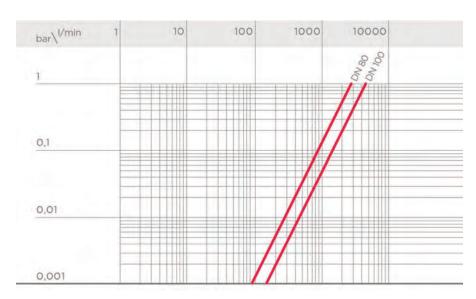
VÁLVULA DE MEMBRANA

- Sistema de unión por encolado y por embridado
- Construcción compacta y peso reducido
- Elevado coeficiente de flujo y pérdidas de carga reducidas
- Órganos de maniobra internos de metal, aislados del fluido, con disco antifricción para reducir al mínimo el rozamiento
- Volante que mantiene siempre la misma altura durante la rotación

Especificaciones técnicas							
Construcción	Válvula de membrana de asiento simple						
Gama dimensional	DN 80 ÷ 100						
Presión nominal	PN 10 con agua a 20 °C PN 6 con agua a 20 °C (versión de PTFE)						
Rango de temperatura	0 °C ÷ 100 °C						
Estándares de unión	Encolado: EN ISO 15493, ASTM F 439. Unibles con tubos según EN ISO 15493						
	Embridado: ISO 7005-1, EN ISO 15493, EN 558-1, DIN 2501, ANSI B.16.5 cl. 150.						
Referencias normativas	Criterios constructivos: EN ISO 16138, EN ISO 15493						
	Métodos y requisitos de las pruebas: ISO 9393						
	Criterios de instalación: DVS 2204, DVS 2221, UNI 11242						
Material de la válvula	Cuerpo: PVC-C Tapón: PP-GR Volante PA-GR Volante PA-GR						
Material membrana	EPDM, FPM, PTFE (bajo pedido NBR)						
Opciones de comando	Mando manual; actuador neumático						


- Volante de mando de (PA-GR) de elevada resistencia mecánica con empuñadura ergonómica para una óptima maniobrabilidad.
- Indicador óptico de posición metálico suministrado de serie.
- Tapón de PP-gR de protección total. Perfil interior de apriete de la membrana circular y simétrico.
- Membrana de estanqueidad disponible en EPDM, FPM, PTFE (NBR bajo pedido) y fácilmente sustituible.
- Insertos roscados de metal para el anclaje de la válvula.

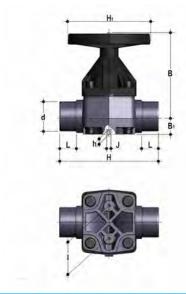
DATOS TÉCNICOS


VARIACIÓN DE LA PRESIÓN EN FUNCIÓN DE LA TEMPERATURA

Para agua o fluidos no peligrosos para los cuales el material está clasificado como QUÍMICAMENTE RESISTENTE. En otros casos es necesaria una disminución adecuada de la presión nominal PN (25 años con factor de seguridad).

Nota: Para el empleo del PVC-C con temperaturas de funcionamiento superiores a 90°, se aconseja ponerse en contacto con el servicio técnico.

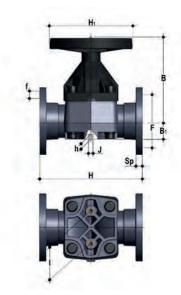
DIAGRAMA DE PÉRDIDA DE CARGA


COEFICIENTE DE FLUJO K_v100

Por coeficiente de flujo k_v 100 se entiende el caudal Q en litros por minuto de agua a 20 °C que genera una pérdida de carga Δp = 1 bar para una determinada posición de la válvula. los valores k_v 100 indicados en la tabla son para la válvula completamente abierta.

Los datos de este catálogo se suministran de buena fe. FIP no asume ninguna responsabilidad por los datos no derivados directamente de normas internacionales. FIP se reserva el derecho de aportar cualquier modificación. La instalación y el mantenimiento del producto deben ser realizados por personal cualificado.

DIMENSIONES



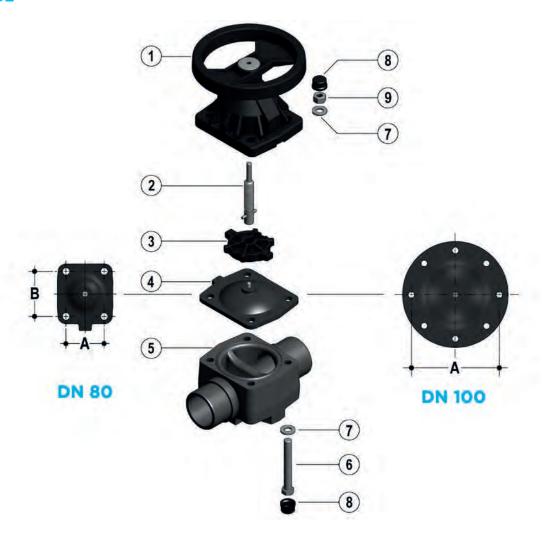
VMDC

Válvula de membrana con conexiones macho para encolar, serie métrica

d	DN	PN			Н	H ₁					g	Código EPDM	Código FKM	Código PTFE
90	80	*10	225	55	300	200	23	100	M12	51	7290	VMDC090E	VMDC090F	VMDC090P
110	100	*10	295	69	340	250	23	120	M12	61	10900	VMDC110E	VMDC110F	VMDC110P

*PTFE PN6

VMOC


Válvula de membrana con bridas fijas, agujeros EN/ISO/DIN PN10/16. Diámetro según norma EN 558-1

d	DN	PN			Н		H,				U	Sp	g	Código EPDM	Código FKM	Código PTFE
90	80		225		310								9140		VMOC090F	VMOC090P
110	100	*10	295	72	350	120	250	M12	180	18	8	22,5	13120	VMOC110E	VMOC110F	VMOC110P

*PTFE PN6

COMPONENTES

DESPIECE

DN	80	100
A	114	193
В	127	-

- 1 Bonnet (PP-GR 1); Handwheel (PA-GR 1)
- Indicator stem (STAINLESS steel 1)
- 3 Shutter (PBT 1)

- Diaphragm seal (EPDM, FKM, PTFE 1)
- 5 Body (PVC-C 1)
- 6 Hexagonal screw (Zinc plated steel 4)
- Washer (Zinc plated steel 4)
- Protection plug (PE 4)
- 9 Nut (Zinc plated steel 4)

Entre paréntesis se indica el material del componente y la cantidad suministrada

DESMONTAJE

En presencia de fluidos peligrosos, hay que drenar y ventilar la válvula.

La membrana es la parte de la válvula más sometida al estrés mecánico y químico del fluido; el control del estado de la membrana debe realizarse cíclicamente según las condiciones de funcionamiento, para ello hay que desmontarla del volante y del cuerpo válvula.

- Interceptar el fluido aguas arriba de la válvula y asegurarse de que no permanezca bajo presión (descargar aguas abajo si fuera necesario).
- 2) Desenroscar los tornillos (6) y separar el cuerpo (5) del grupo de maniobra.
- 3) Desenroscar la membrana (4) del obturador (3). Girar el volante hacia la derecha hasta liberar el grupo eje-obturador. Limpiar o sustituir, si es necesario, la membrana (4). Lubricar, si es necesario, el eje (2).

MONTAJE

- 1) Aplicar el obturador (3) al eje (2) pres- tando atención a la orientación de la clavija presente en el eje.
- 2) Enroscar la membrana (4) al eje (2) prestando atención a no provocar el estiramiento de la misma
- 3) Colocar la válvula en la posición de apertura.
- 4) Colocar el tapón-volante (1) en el cuerpo (5) y unir los dos componentes mediante tornillos.
- 5) Poner, a presión, los tapones de protección (8)

INSTALACIÓN

La válvula puede instalarse en cualquier posición y dirección. Durante la puesta en marcha de la instalación, asegurarse de que no haya pérdidas entre la membrana y el cuerpo de la válvula, si fuera necesario, apretar los tornillos de conexión (6).

ADVERTENCIAS 1

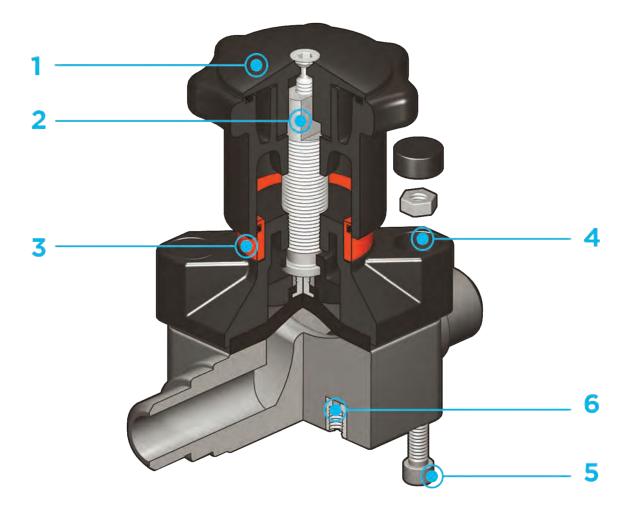
Nota: en las operaciones de montaje, se aconseja lubricar el eje roscado. Para ello, se recuerda que no es adecuado el uso de aceites minerales, que resultan agresivos para la junta EPDM.

Además, dado que el asiento de membrana está comprimido entre cuerpo y actuador, antes de la instalación, deben controlarse y, si es necesario, apretarse los tornillos y las tuercas del cuerpo válvula.

CM DN 12÷15

PVC-C

Válvula de membrana compacta

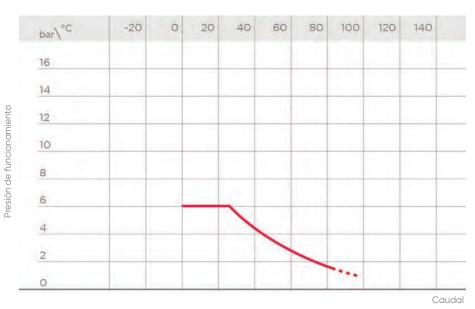

CM **DN 12÷15**

La CM es una válvula de membrana de control manual de pequeñas dimensiones y estructura especialmente compacta, ideal para ser usada en espacios reducidos.

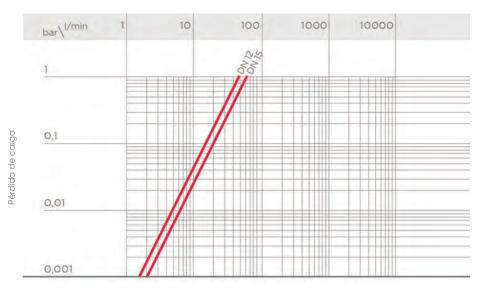
VÁLVULA DE MEMBRANA COMPACTA

- Sistema de unión por encolado.
- Construcción extremadamente compacta.
- Órganos de maniobra internos de metal, aislados del fluido.
- Eje para la transmisión del movimiento en acero INOX.
- Compresor con soporte de la membrana flotante.
- Fácil sustitución de la membrana de estanqueidad.
- Componentes internos anticorrosión.
- **Sistema de estanqueidad CDSA** (Circular Diaphragm Sealing Area) que ofrece las siguientes ventajas:
 - distribución uniforme de la presión del obturador sobre la membrana de estanqueidad.
 - reducción del par de apriete de los tornillos que fijan el cuerpo de la válvula al actuador.
 - menor estrés mecánico para todos los componentes de la válvula (ac-tuador, cuerpo y membrana).
 - facilidad de limpieza de las zonas internas de la válvula.
 - minimización del riesgo de acumulación de depósitos, contaminación o daño de la membrana a causa de fenómenos de cristalización.
 - reducción del par de maniobra.

Especificaciones técnicas	
Construcción	Válvula de membrana compacta de asiento simple
Gama dimensional	DN 12 ÷ 15
Presión nominal	PN 6 con agua a 20 °C
Rango de temperatura	0 °C ÷ 100 °C
Estándares de unión	Encolado: EN ISO 15493 Unibles con tubos según EN ISO 15493
Referencias normativas	Criterios constructivos: EN ISO 16138, EN ISO 15493
	Métodos y requisitos de las pruebas: ISO 9393
	Criterios de instalación: DVS 2204, DVS 2221, UNI 11242
Material de la válvula	Cuerpo: PVC-C Tapón y volante: PA-GR
Materiales membrana	EPDM, FKM, PTFE
Opciones de comando	Mando manual; actuador neumático


- Volante de mando de PA- GR completamente sellado de elevada resistencia mecánica con empuñadura ergonómica para una óptima maniobrabilidad.
- 2 Limitador de cierre integrado y regulable que permite limitar una compresión excesiva de la membrana o garantizar siempre un flujo mínimo de fluido.
- Indicador óptico de posiciónsuministrado de serie.
- 4 Tapa de PA-gR con tuercas de acero INOX completamente protegidas por capuchones de plástico sin zonas de acumulación de impurezas. Perfil interior de apriete de la membrana circular y simétrico.
- 5 Tornillos de acero INOX con posibilidad de montaje también desde arriba.
- 6 Insertos roscados de metal para el anclaje de la válvula.

DATOS TÉCNICOS


VARIACIÓN DE LA PRESIÓN EN FUNCIÓN DE LA TEMPERATURA

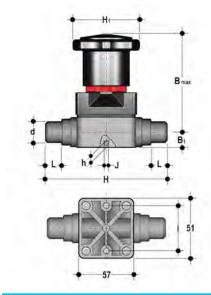
Para agua o fluidos no peligrosos para los cuales el material está clasificado como QUÍMICAMENTE RESISTENTE. En otros casos es necesaria una disminución adecuada de la presión nominal PN (25 años con factor de seguridad).

Nota: Para el empleo del PVC-C con temperaturas de funcionamiento superiores a 90°, se aconseja ponerse en contacto con el servicio técnico.

DIAGRAMA DE PÉRDIDA DE CARGA

Caudal

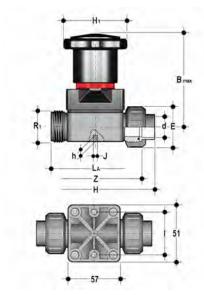
COEFICIENTE DE FLUJO K_v100


Por coeficiente de flujo $k_{\nu}100$ se entiende el caudal Q en litros por minuto de agua a 20 °C que genera una pérdida de carga $\Delta p=1$ bar para una determinada posición de la válvula.

Los valores k_v100 indicados en la tabla son para la válvula completamente abierta.

DN	12	15
k _v 100 I/min	47	60

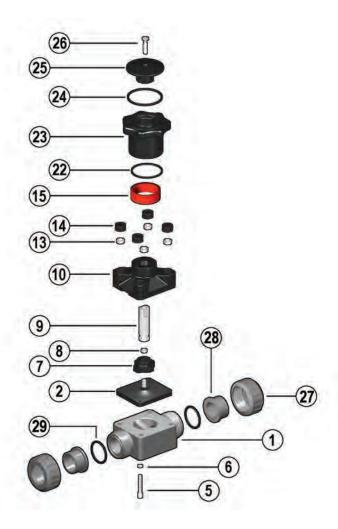
Los datos de este catálogo se suministran de buena fe. FIP no asume ninguna responsabilidad por los datos no derivados directamente de normas internacionales. FIP se reserva el derecho de aportar cualquier modificación. La instalación y el mantenimiento del producto deben ser realizados por personal cualificado.


DIMENSIONES

CMDC

Válvula de membrana compacta con conexiones macho para encolar, serie métrica

														Código PTFE
20	15	6	86	15	124	58,5	8	35	M ₅	17	336	CMDC020E	CMDC020F	CMDC020P


CMUIC

Válvula de membrana compacta con enlaces hembra para encolar

d	DN	PN	B max		Н	H ₁				LA			g	Código EPDM	Código FKM	Código *PTFE
20	15	6	86	41	129,5	58,5	8	35	M_5	90	1"	97,5	310	CMUIC020E	CMUIC020F	CMUIC020P

COMPONENTES

DESPIECE

- 1 Body (PVC-C 1)
- Diaphragm seal (EPDM, FKM, PTFE 1)
- 5 Fastening screw (STAINLESS steel 4)
- 6 Washer (STAINLESS steel 4)
- 7 Shutter (PA-GR 1)

- Nut (STAINLESS steel 1)
- 9 Stem (STAINLESS steel 1)
- **10** Bonnet (PA-GR 1)
- 13 Nut (STAINLESS steel 4)
- 14 Protection plug (POM 4)
- 15 Optical position indicator (PVDF 1)
- **22** O-Ring (NBR 1)
- 23 Handwheel (PA-GR 1)
- **24** O-Ring (NBR 1)
- **25** Bonnet (PA-GR 1)
- 26 Fastening screw (STAINLESS steel 1)

Entre paréntesis se indica el material del componente y la cantidad suministrada

DESMONTAJE

Si la válvula ya está instalada en la línea, hay que interceptar aguas arriba el fluido transportado y asegurarse de que no haya presión, si es necesario descargar completamente la instalación aguas abajo. En presencia de fluidos peligrosos, hay que drenar y ventilar la válvula.

La membrana es la parte de la válvula más sometida al estrés mecánico y químico del fluido; el control del estado de la membrana debe realizarse cíclicamente según las condiciones de funcionamiento, para ello hay que desconectarla del volante y del cuerpo de la válvula.

- 1) Desenroscar los cuatro tornillos (5) y separar el cuerpo (1) del grupo de maniobra.
- 2) Desenroscar la membrana (2) del obturador (7).
- 3) Si es necesario, limpiar o cambiar la membrana (2).
- 4) Lubricar, si es necesario, el eje (9).

MONTAJE

- La membrana (2) debe enroscarse completamente en el compresor (7) en el sentido de las agujas del reloj, si es necesario, desenroscar en sentido contrario para obtener el centrado exacto de los agujeros para los tornillos.
- 2) Fijar el obturador manual (10) con los tornillos (5) en el cuerpo (1). Apretar los tornillos en cruz asegurándose de no comprimir excesivamente la membrana.

INSTALACIÓN

La válvula puede instalarse en cualquier posición y dirección.

Durante la puesta en marcha de la instalación, asegurarse de que no haya pérdidas entre la membrana y el cuerpo de la válvula, si fuera necesario, apretar los tornillos de conexión (5).

REGULACIÓN

La regulación realizada en la fábrica garantiza siempre la estanqueidad sin recurrir a otras intervenciones. Para regular de forma diferente: girar el volante hasta la posición de apertura mínima necesaria, desenroscar el tornillo (26) con una llave hexagonal macho.

Retirar el tapón (25) y girar el volante (23) en el sentido horario hasta que se sienta una resistencia a la rotación.

Volver a colocar, si es necesario, la junta tórica (24) en su alojamiento e introducir la tapa (25) de nuevo en el volante: el encastre de doble D debe introducirse en el eje y después, con pequeñas rotaciones, hay que hacer coincidir las nervaduras de la tapa con las del volante.

Fijar el tornillo (26) con un par bastante elevado.

Cada vuelta del volante corresponde a 1,75 mm de carrera.

RV DN 15÷50

PVC-C

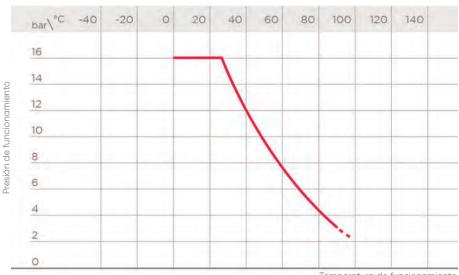
Filtro inclinado

RV **DN 15÷50**

El filtro inclinado RV limita el paso de partículas sólidas presentes en el fluido mediante una malla filtrante.

FILTRO INCLINADO

- Sistema de unión encolado, roscado y embridado.
- Malla filtrante montada en un soporte fácilmente extraíble que facilita la limpieza o la sustitución de la propia malla.
- Compatibilidad del material de la válvula (PVC-C) con el transporte de agua, agua potable y otras sustancias alimentarias según las normativas vigentes.
- Posibilidad de efectuar el mantenimiento con el cuerpo de la válvula instalado.


Especificaciones técnicas							
Construcción	Filtro inclinado						
gama dimensional	DN 15 ÷ 50						
Presión nominal	PN 16 con agua a 20 °C						
Rango de temperatura	0 °C ÷ 100 °C						
Estándares de unión	Encolado: EN ISO 15493, ASTM F 439. Unibles con tubos según EN ISO 15493, ASTM F 441						
	Roscado: UNI ISO 228-1, DIN 2999, ASTM F 437						
	Embridado: ISO 7005-1, EN ISO 15493, EN 558-1, DIN 2501, ANSI B.16.5 cl. 150						
Referencias normativas	Criterios constructivos: EN ISO 15493						
	Métodos y requisitos de las pruebas: ISO 9393						
	Criterios de instalación: DVS 2204, DVS 2221, UNI 11242						
Material de la válvula	Cuerpo: PVC-C Malla: PP						
Material de las juntas	EPDM, FKM						

DATOS TÉCNICOS

VARIACIÓN DE LA PRESIÓN EN FUNCIÓN **DE LA TEMPERATURA**

Para agua o fluidos no peligrosos para los cuales el material está clasificado como QUÍMICAMENTE RESISTENTE. En otros casos es necesaria una disminución adecuada de la presión nominal PN (25 años con factor de seguridad).

Nota: Para el empleo del PVC-C con temperaturas de funcionamiento superiores a 90°, se aconseja ponerse en contacto con el servicio técnico.

Temperatura de funcionamiento

DIAGRAMA DE PÉRDIDA **DE CARGA**

15

40

k,100 I/min

20

70

25

103

32

188

COEFICIENTE DE FLUJO K_v100

Por coeficiente de flujo k 100 se entiende el caudal Q en litros por minuto de agua a 20 °C que genera una pérdida de carga Δp= 1 bar para una determinada posición de la válvula.

Los valores k 100 indicados en la tabla son para la válvula completamente abierta.

DIMENSIONES	DEL
FILTRO	

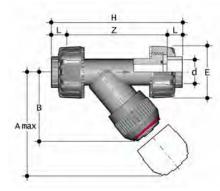
	20÷25	32÷63
número de agujeros por cm2	37	32
serie ASTM equivalente en mesh	18	20
ø agujero equivalente μm	1016	889
material de la malla	PP	PP

Caudal

50

410

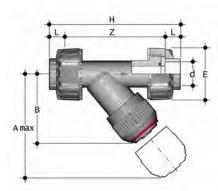
40


255

205

SUPERFICIE TOTAL DE	DN	15	20	25	32	40	50
FILTRACIÓN A _{TOT} (CM ²)	A_{tot}	16	23,5	36	53	69	101

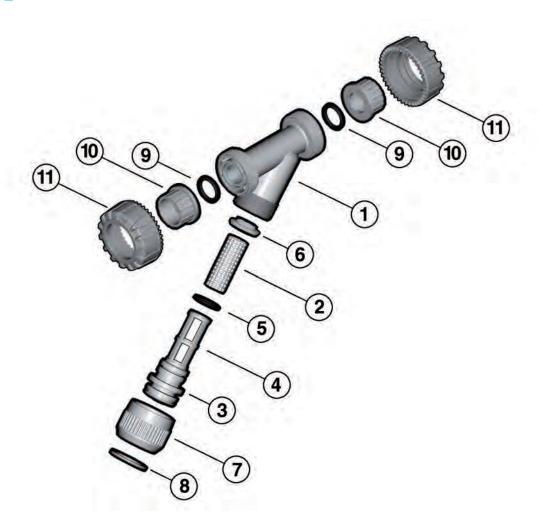
Los datos de este catálogo se suministran de buena fe. FIP no asume ninguna responsabilidad por los datos no derivados directamente de normas internacionales. FIP se reserva el derecho de aportar cualquier modificación. La instalación y el mantenimiento del producto deben ser realizados por personal cualificado.


DIMENSIONES

RVUIC

Filtro inclinado con enlaces hembra para encolar, serie métrica.

d	DN	PN	A max	В	Е	Н	L	Z	g	Código EPDM	Código FKM
20	15	16	125	72	55	135	16	103	231	RVUIC020E	RVUIC020F
25	20	16	145	84	66	158	19	120	392	RVUIC025E	RVUIC025F
32	25	16	165	95	75	176	22	132	576	RVUIC032E	RVUIC032F
40	32	16	190	111	87	207	26	155	802	RVUIC040E	RVUIC040F
50	40	16	210	120	100	243	31	181	1199	RVUIC050E	RVUIC050F
63	50	16	240	139	120	298	38	222	2018	RVUIC063E	RVUIC063F


RVUAC

Filtro inclinado con enlaces hembra para encolar, serie ASTM.

d	DN	PN	A max	В	Е	Н	L	Z	g	Código EPDM	Código FKM
1/2"	15	16	125	72	55	149	22,5	104	231	RVUAC012E	RVUAC012F
3/4"	20	16	145	84	66	172	25,5	121	392	RVUAC034E	RVUAC034F
1"	25	16	165	95	75	190	28,7	132,6	576	RVUAC100E	RVUAC100F
1" 1/4	32	10	190	111	87	223	32	159	802	RVUAC114E	RVUAC114F
1" 1/2	40	10	210	120	100	251	35	181	1199	RVUAC112E	RVUAC112F
2"	50	10	240	139	120	298	38,2	221,6	2018	RVUAC200E	RVUAC200F

COMPONENTES

DESPIECE

- 1 Body (PVC-C 1)
- 2 Strainer (PP-H 1)*
- 3 Bonnet (PVC-C 1)
- 4 Strainer support (PVC-C 1)
- 5 O-Ring (EPDM or FKM 1)*
- 6 Washer (PVC-C 1)
- 7 Union nut (PVC-C 1)
- 8 Retaining ring (PVC-C 1)
- Socket seal O-Ring (EPDM or FKM 2)*
- 10 End connector (PVC-C 2)*
- 11 Union nut (PVC-C 2)

Entre paréntesis se indica el material del componente y la cantidad suministrada

^{*}Repuestos

DESMONTAJE

- 1) Aislar el filtro del flujo del líquido y vaciar la instalación aguas arriba de la misma.
- 2) Desenroscar la tuerca (7) y separar la tapón-soporte (3-4) del cuerpo (1).
- 3) Extraer la arandela de fondo (6) del tapón-soporte (3-4).
- 4) Extraer el anillo abierto (8) y separar la tuerca (7) del tapón (3).
- 5) Extraer la junta tórica de estanqueidad del manguito (5).

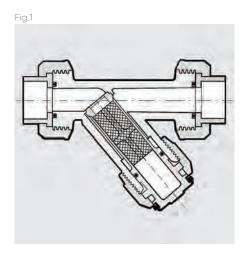
MONTAJE

- 1) Introducir la junta tórica (5) en su alojamiento en el tapón (3).
- 2) Introducir el tapón (3) en la tuerca (7) y fijar los dos componentes mediante el anillo abierto (8).
- 3) Introducir en el tapón-soporte (3-4) la malla (2) y asegurarla con la arandela de fondo (6).
- 4) Introducir el tapón (3) en el cuerpo (1) y enroscar la tuerca (7).

Nota: las operaciones de mantenimiento pueden llevarse a cabo con el cuerpo válvula instalado. SE aconseja, en las operaciones de montaje, lubricar los asientos de goma. Para ello, se recuerda que no deben usarse aceites minerales ya que son agresivos para la junta EPDM.

El filtro puede instalarse en cualquier posición prestando atención a que la flecha grabada en el cuerpo indique la dirección del fluido y a que la parte filtrante esté dirigida hacia abajo. Es conveniente, para evitar daños a la malla, introducir en la instalación aparatos destinados a evitar la inversión del flujo.

- 1) Desenroscar las tuercas (11) e introducirlas en los tramos de tubo.
- 2) Proceder a la soldadura térmica de los manguitos (10) en los tramos de tubo.
- 3) Posicionar el filtro entre los manguitos.
- 4) Apretar las tuercas.


ADVERTENCIAS 1

Los filtros con cuerpo transparente permiten el paso de la luz provocando el crecimiento de algas y microorganismos en su interior.

Los filtros con cuerpo transparente no están protegidos de la radiación solar. Un uso en instalaciones al aire libre acelera el proceso de envejecimiento del material reduciendo su tiempo de vida.

Se recomienda proteger los filtros con cuerpo transparente contra vibraciones en las cercanías de grupo de bombeo.

Verificar siempre la limpieza de los elementos filtrantes.

Leyenda

Código de referencia junta tórica

diámetro nominal exterior del tubo en mm

DN diámetro nominal interior en mm

EPDM polipropileno elastómero etileno

FPM (FKM) fluoroelastómero

g peso en gramos

HIPVC PVC alto impacto

K Ilave del tapón

longitud en metros

tornillos

MRS mínimo valor garantizado de la carga de rotura del

material a 20 °C - agua - para 25 años de servicio

número agujeros bridas

NBR elastómero butadieno acrilonitrilo

PA-gR poliamida reforzada con fibras de vidrio

PBT tereftalato de polibutileno

PE polietileno

PN presión nominal en bar (presión máxima de funcionamiento

en agua a 20°C)

POM resina poliacetálica

PP-gR polipropileno reforzado con fibra de vidrio

PP-H polipropileno homopolímero PVC-C cloruro de polivinilo pos-clorado PVC-U cloruro de polivinilo rígido PVDF

polifluoruro de vinilideno PTFE tereftalato de polibutileno

R dimensión nominal del roscado en pulgadas

s espesor de los tubos en milímetros

SDR standard dimension ratio (índice de dimensión estándar)

= d/s

Sp espesor bridas en válvulas en versión embridada

U número de agujeros para válvulas en versión embridada

Aliaxis Iberia, S.A.U.C/ del Yen, s/n - Pol. Las Atalayas
03114 Alicante, España
÷34 965 109 044

Empresa registrada según normas

